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Federated Learning is a distributed machine learning paradigm designed to preserve 

user privacy on decentralized devices without transferring raw data to a central 

server. Protecting data privacy in FL involves determining permissible operations 

and how they can be executed. This review provides an in-depth exploration of 

privacy threat models within FL, distinguishing between scenarios where the 

central server is either trusted or untrusted, and identifying appropriate defensive 

tools and technologies for these settings. The review covers secure computational 

techniques, including MPC, HE, and TEEs, as well as privacy-preserving 

mechanisms such as DP, LDP, and DDP models. It also examines hybrid 

approaches that combine multiple privacy models to enhance efficiency and 

robustness. The effectiveness of these methods is analysed across different 

scenarios involving both honest and potentially malicious servers and users. The 

findings reveal that while privacy-preserving methods mitigate risks, challenges 

persist in trade off privacy, communication efficiency, and model accuracy. This 

review highlights open research directions and serves as a comprehensive reference 

for researchers and practitioners seeking to implement robust privacy measures in 

federated learning systems. 

Keywords: Federated Learning, Privacy Preservation, Differential Privacy, Homomorphic 

Encryption, Multi-Party Computation, Trusted Execution Environments. 

  

1. Introduction 

he rapid expansion of data-driven technologies has 

placed immense emphasis on machine learning (ML) 

algorithms, particularly in sectors such as healthcare, 

finance, and industrial applications. Federated Learning 

(FL), an emerging paradigm, has gained significant 

attention as it enables decentralized model training by 

aggregating local updates from devices or nodes, without 

transferring the data itself. This process reduces 

communication overhead and mitigates privacy concerns, 

making it particularly valuable in industries that handle 

sensitive information. However, despite its potential, 

privacy preservation in Federated Learning remains a 

T 
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fundamental challenge, especially as the scale and 

complexity of data continue to increase. 

Privacy preservation in FL is critical due to the inherent 

risks associated with sharing data across decentralized 

networks. In many applications, such as healthcare or 

aviation, data may be subject to strict privacy regulations, 

and mishandling can lead to severe ethical and legal 

implications. The decentralized nature of FL makes it an 

attractive solution, as data is never shared in raw form, thus 

offering a certain level of confidentiality. Nonetheless, 

securing the privacy of the data while maintaining the 

performance of the model is a delicate balance that requires 

innovative techniques. 

This paper offers a comprehensive review of recent 

advancements in Federated Learning, focusing specifically 

on privacy preservation methods and their application in 

various domains. Unlike previous reviews, which may have 

provided a general overview of FL or focused on specific 

industries, our review delves into the nuanced challenges 

and solutions related to privacy in FL. We also highlight 

emerging research opportunities, particularly in the context 

of integrating advanced cryptographic techniques, 

differential privacy, and secure multi-party computation 

into FL frameworks. Furthermore, we explore the potential 

of hybrid models that combine Federated Learning with 

edge computing, offering new avenues for data privacy 

while optimizing computational resources. 

The main contributions of this paper are as follows: 

1. A detailed survey of privacy-preserving 

techniques in Federated Learning, with an 

emphasis on their application in real-world 

scenarios. 

2. A discussion on the existing gaps in FL 

research, particularly around scalability, 

heterogeneity, and security. 

3. A roadmap for future research that suggests 

potential solutions for overcoming these 

challenges and advancing the practical 

implementation of FL in privacy-sensitive 

industries. 

By offering a novel perspective on Federated Learning 

with an exclusive focus on privacy preservation, this 

review aims to provide both academics and practitioners 

with a deeper understanding of the state-of-the-art 

techniques and identify promising research directions for 

the future. 

As illustrated in Figure 1: Horizontal Federated 

Learning, Vertical Federated Learning, and Federated 

Transfer Learning, each designed to handle different data 

configurations across collaborating clients [1]. 

 

Figure 1. Three distinct types of FL approaches [1] 

1.1. Horizontal Federated Learning (HFL) (left panel): 

HFL is applicable when multiple clients (e.g., Client A 

and Client B) share the same feature space but have 

different sample spaces. In other words, each client has 

data on different individuals but records similar attributes 

for each individual. Local training occurs on each client’s 

data, and only the model updates (e.g., gradients) are sent 

to a central server for aggregation. This setup allows for 

model improvement across distributed datasets without 
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requiring the raw data to leave each client’s device, thus 

preserving data privacy. 

1.2. Vertical Federated Learning (VFL) (middle panel): 

VFL is suitable when clients (e.g., Client A and Client 

B) have different feature sets on the same sample group, 

meaning they have different information on the same 

individuals. This scenario typically occurs between 

organizations holding complementary data about the same 

set of users. Since each client has distinct features, the data 

cannot be directly combined for model training. Instead, 

VFL involves encrypting model updates and exchanging 

only encrypted gradients and intermediate outputs with the 

central server, allowing secure aggregation and 

collaborative learning. 

1.3. Federated Transfer Learning (FTL) (right panel): 

FTL addresses situations where both the feature and 

sample spaces differ across clients, but some form of 

knowledge transfer can still be beneficial. This approach is 

particularly useful when one client has a limited amount of 

labeled data that could benefit from the knowledge in other 

clients’ datasets. By transferring features from one domain 

to another and then aggregating model updates on a central 

server, FTL supports learning across different feature 

distributions, enabling effective model training despite 

limited data availability. 

Each method is visualized with an indication of how 

data is distributed between Client A and Client B and how 

model updates are aggregated at a central server, 

showcasing the adaptability of federated learning to 

different data-sharing scenarios. 

Beyond privacy concerns, FL systems also face other 

security threats. For instance, attackers may attempt to 

disrupt the training process, prevent effective learning, or 

manipulate the model to produce outcomes that serve their 

interests. Addressing these challenges requires a 

comprehensive understanding of potential attack vectors 

and the development of defensive strategies to mitigate 

these risks. 

The aim of this review is to provide a comprehensive 

overview of privacy-preserving techniques in FL. It 

examines various threat models associated with the 

deployment of FL, distinguishing between scenarios 

involving trusted and untrusted servers. Additionally, this 

review explores key tools and technologies, such as secure 

computational methods, differential privacy, and hybrid 

approaches that integrate multiple privacy mechanisms. By 

analyzing the strengths and limitations of existing methods, 

it highlights current challenges and identifies promising 

research directions. This review equips researchers and 

practitioners with a comprehensive understanding of 

existing privacy strategies in FL. It also highlights future 

advancements necessary to address emerging threats 

effectively. 

The subsequent sections of this paper systematically 

address these concerns. Section 2 explores different threat 

models relevant to FL, with a focus on the development of 

defensive mechanisms. Section 3 introduces key tools and 

technologies that can be employed to establish robust 

privacy protections against the identified threats. Section 4 

addresses challenges under the assumption of a secure 

server, examining issues related to malicious users and 

adversarial analysts, and discussing scenarios in which 

server security is compromised. Finally, Section 5 outlines 

future directions and presents open questions that require 

further exploration. 

2. Threat Models 

To comprehensively understand privacy risks in FL, it is 

essential to analyze the threat models arising from the 

various actors involved in the FL ecosystem. This 

methodology outlines the approach adopted for classifying 

and examining these privacy threats, with a focus on their 

potential impact and attack mechanisms across different 

scenarios. 

Privacy is not a binary attribute or a simple scalar 

variable; rather, it is a multifaceted concept encompassing 

multiple dimensions. A comprehensive understanding of 

privacy necessitates a precise identification of the various 

stakeholders and their respective roles in shaping relevant 

threat models. Therefore, it is crucial to distinguish 

between the perspectives of server administrators and 

analysts who utilize trained models. A system engineered 

to provide robust privacy protections against malicious 

analysts may prove inadequate in addressing threats posed 

by malicious servers. These distinctions align with the 

threat models delineated in the existing literature. For 

instance, in the work of [2], the term "encoder" corresponds 

to users, "shuffler" refers to servers, and "analyzer" denotes 

analysts or servers engaged in data analysis post-

processing. 
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The design and features of an FL infrastructure—such as 

network topology, types of algorithms, and the frequency 

of model updates—significantly impact data minimization 

and privacy assurance. If users are unaware of the technical 

details and limitations, they may develop a false sense of 

security regarding their privacy. Therefore, providing clear 

and transparent information, along with appropriate 

education, is crucial to help users understand how their data 

is utilized. 

Differences in users' perceptions of privacy and the 

varying importance they place on data protection can 

inform the development of better privacy-preserving 

mechanisms. This may involve creating methods that adapt 

federated learning parameters based on individual privacy 

preferences. Determining who should be responsible for 

setting these parameters—whether service providers, users, 

platforms, or policymakers—remains an important topic 

that requires ongoing discussion. 

Moreover, mechanisms such as "privacy-preserving 

safeguards" [3] can offer privacy guarantees to most users 

while allowing targeted monitoring to ensure both data 

confidentiality and privacy goals. These solutions would 

enable users to select their desired level of privacy, 

potentially enhancing their sense of security. While the 

issues at hand are complex, addressing user needs and 

perceptions is essential for progress in this field. 

2.1. Federated Learning's Privacy 

The primary objective of FL is to enable analysts or 

engineers to perform computations on distributed datasets, 

often involving the training of machine learning models or 

simpler statistical evaluations. FL improves privacy by 

keeping raw user data on devices and only sharing model 

updates, but it doesn’t fully guarantee privacy, as model 

updates can still potentially reveal information. Three key 

aspects of privacy must be considered: 

Computational Privacy: Ensuring that the process of 

computing functions and any intermediate results do not 

expose users to potential attacks by malicious servers. 

Secure computation methods, such as secure multi-party 

computation (MPC) and trusted execution environments 

(TEEs), are essential to protect data during the computation 

process. 

Data Privacy: Assessing the extent of information about 

participating users that might be exposed through 

computation results. Techniques like differential privacy 

(DP) are employed to limit the exposure of individual data. 

Verifiability: Ensuring that users and servers can verify 

the integrity of computations without disclosing private 

data. Techniques such as zero-knowledge proofs (ZKPs) 

and remote attestation can be used for this purpose [4]. 

2.2. Definition of Scope and Assumptions 

Addressing privacy risks in FL requires a precise 

understanding of the threat landscape. Privacy is a multi-

dimensional concept, influenced by various adversarial 

capabilities. For this review, each threat model was 

examined based on the following: 

Actor Role: Distinguishing between the roles of the 

server, users, and external parties, including both colluding 

and non-colluding entities. 

Passive Malicious Server or Client (Honest-But-Curious 

or Semi-Honest) 

Active Malicious Server or Client (Malicious while the 

Context is Clear) 

Trust Level: Analysing scenarios with configurations 

ranging from fully trusted to partially trusted and untrusted 

servers to understand the limitations and security 

requirements of each setup. 

2.3. Comparison of Privacy-Preserving Techniques in 

FL 

This section compares several widely used privacy-

preserving techniques in the context of FL. The comparison 

that shows in Table 1, addresses key factors such as threat 

models, computational complexity, scalability, the impact 

on model accuracy, and the trade-offs between privacy and 

performance. The goal is to provide a clear and concise 

overview of each technique’s strengths and weaknesses, 

enabling a deeper understanding of their applicability in 

sensitive domains like healthcare, aviation, and finance. 

Table 1. Comparison Privacy-Preserving Techniques 

Privacy-

Preserving 
Technique 

Effectiveness in Threat 

Models 

Computational 

Complexity 

Scalability Impact on Model 

Accuracy 

Privacy Trade-Offs 

Differential 

Privacy (DP) 

Effective against 

untrusted servers. 

Moderate to high. Noise 

injection requires 

Medium scalability. 

Performance degrades 

Significant impact. High 

noise injection reduces 

Strong privacy 

protection but reduces 
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Provides strong 
privacy guarantees 

even if the server is 

adversarial. 

significant computation, 
especially in large-scale 

models. 

with large datasets or 
high-dimensional data. 

model accuracy, 
especially in sensitive 

applications. 

model performance due 
to added noise. 

Secure 

Aggregation 
(SA) 

Effective against 

untrusted servers. 
Works well with 

trusted clients. 

Low to moderate. 

Computational 
complexity primarily 

depends on the 

aggregation process and 
communication 

overhead. 

High scalability. 

Suitable for large-scale 
FL setups with many 

clients. 

Minimal impact. Secure 

aggregation mainly 
affects communication, 

leaving model accuracy 

largely intact. 

Balanced trade-off: 

security with minimal 
loss of accuracy, but 

may not provide strong 

privacy guarantees in all 
cases. 

Homomorphic 

Encryption (HE) 

Effective against both 

trusted and untrusted 

servers, ensuring data 
remains encrypted 

during computations. 

Very high. 

Homomorphic 

encryption operations 
are computationally 

expensive and often 

require specialized 
hardware. 

Low scalability. Due to 

high computational 

cost, it is less suitable 
for large-scale 

deployments. 

High impact. The 

complexity of encryption 

operations typically 
results in reduced model 

accuracy. 

Strong privacy 

guarantees, but 

significant performance 
degradation due to 

computational overhead. 

Secure Multi-

Party 

Computation 

(SMPC) 

Effective against 

untrusted servers. 

Provides robust 

privacy by distributing 
computations across 

multiple parties. 

High computational 

cost, particularly with 

large-scale data. Relies 

on multiple rounds of 
secure communication. 

Low scalability. SMPC 

is typically not scalable 

for large federated 

setups with numerous 
clients. 

Moderate impact. SMPC 

may cause delays in 

model training and 

accuracy loss due to the 
distributed nature of 

computation. 

Strong privacy 

protection, but expensive 

in terms of computation 

and communication, 
leading to trade-offs 

with efficiency. 

Federated 

Learning with 

Blockchain 
(FLB) 

Effective against both 

trusted and untrusted 

servers. Blockchain 
ensures integrity and 

transparency in the 

aggregation process. 

High. Blockchain 

operations (e.g., 

verification and 
consensus) introduce 

additional overhead. 

Medium scalability. 

Blockchain solutions 

can handle a moderate 
number of nodes, but 

verification processes 

can slow down the 
system. 

Moderate to high. 

Blockchain increases 

latency due to consensus 
mechanisms, negatively 

affecting real-time 

applications. 

Strong privacy and 

transparency, but at the 

cost of high 
computational and 

communication 

overhead. 

 

Table 2 provides a clear and concise comparison of the 

strengths and weaknesses of each privacy-preserving 

technique, along with their respective trade-offs in terms of 

privacy, model accuracy, and scalability. 

Table 2. Strengths, Weaknesses, and Trade-Offs of The Privacy-Preserving Techniques 

Privacy-Preserving 

Technique 

Strengths Weaknesses Trade-offs 

Differential Privacy 

(DP) 

Provides strong theoretical privacy 

guarantees, ensuring individual data cannot 

be inferred. Well-suited for sensitive 
domains like aviation, healthcare, and 

finance. 

Significant trade-off between privacy and model 

accuracy. High noise injection degrades 

performance, especially at high privacy levels. 
Computational complexity increases with data size. 

Balances strong privacy with 

potential accuracy loss and 

higher computational 
overhead. 

Secure Aggregation 

(SA) 

Lightweight solution ensuring the server 

cannot access individual updates from 

clients. Efficient when only aggregated 
updates are needed. 

Limited security against advanced attacks (e.g., 

model inversion). Scalability issues in 

heterogeneous client environments. 

Balances privacy and 

efficiency, but may lack strong 

security in complex systems. 

Homomorphic 

Encryption (HE) 

Ideal for maintaining encrypted data during 

training, ensuring data remains private 

from untrusted servers. 

High computational cost. Operations on encrypted 

data are resource-intensive, leading to high latency 

and scalability issues. 

Strong privacy but sacrifices 

scalability and model accuracy 

due to high computational 

overhead. 

Secure Multi-Party 

Computation 

(SMPC) 

Distributes computation, ensuring no single 

party accesses the entire dataset. Suitable 

for sensitive, collaborative applications. 

Highly inefficient in large-scale systems. 

Significant computational cost for secure 

coordination. Delays in model training due to 

necessary secure communication. 

Strong privacy guarantees but 

compromises scalability and 

efficiency in large federated 

setups. 

Federated Learning 

with Blockchain 

(FLB) 

Enhances transparency and integrity. 

Verifiable model updates are tamper-proof, 

providing additional security against 
adversarial behavior. 

High overhead due to consensus mechanisms. 

Scalability issues due to verification costs, making 

it unsuitable for large-scale systems. 

Adds transparency and 

security at the cost of 

increased computational and 
verification overhead. 

 

2.4. Classification of Threats Based on Actor 

Capabilities 

Privacy threats in FL arise from various sources, 

including central servers, users, and external adversaries, 

each with specific objectives and risks. The classification 

of these threats depends on clear definitions of system 

assumptions and privacy goals, which enable effective 

threat modeling. Key parameters—differential privacy (ε), 

system integrity (σ), and adversarial capabilities (γ)—form 
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a core framework for assessing and countering these 

threats. Differential privacy (ε) measures the strength of 

privacy protection, with lower values indicating greater 

privacy, while system integrity (σ) reflects the resilience of 

cryptographic protocols to interference. Adversarial 

capabilities (γ) define the potential control adversaries have 

over system interactions, affecting risk levels. Adversary 

types range from "honest but curious," who observe 

without altering data, to "malicious," who may compromise 

user data and system integrity, necessitating robust privacy 

controls. Incorporating ε, σ, and γ into privacy frameworks 

allows for a well-rounded defense strategy, although 

evolving adversarial techniques require ongoing innovation 

to keep FL systems secure. 

Figure 2 presents a classification of threat models 

according to the capacities of participants involved in 

model training, with each model elaborated in detail in the 

subsequent subsections. 

 

 

Figure 2. Classification of Threats Based on Actor Capabilities 

Threats from Malicious Servers 

The central server plays a crucial role in aggregating 

model updates from user devices. However, if 

compromised or acting maliciously, significant privacy 

risks may arise: 

Inference Attacks: Malicious servers can analyze the 

gradients received from devices to infer sensitive 

information, such as identifying patterns related to health 

conditions or financial data. 

Membership Inference: By examining the updates, 

servers may determine whether specific data points were 

part of the training set, potentially leading to privacy 

breaches. 

Example: In a scenario where hospitals utilize FL to 

train predictive models, a compromised server could infer 

whether data from a specific patient was part of the training 

set by closely analyzing updates from a particular hospital, 

posing a privacy risk. 

Threats from Malicious or Curious Users 

FL involves collaborative participation, where user 

devices contribute to the training process. Some users may 

attempt to extract more information than intended: 

Data Poisoning: Malicious users can introduce incorrect 

or adversarial updates aimed at corrupting the global model 

or inserting backdoors that trigger specific behaviors. 

Model Manipulation and Reverse Engineering: Users 

may try to reverse-engineer the aggregated model, 

potentially inferring information about other participants' 

data. 

Example: In a federated language model, a user may 

analyze updates to infer specific phrases, revealing 

sensitive information shared by other participants. 

This classification framework facilitates a deeper 

understanding of the diverse privacy threats in FL, guiding 

the development of effective countermeasures. 

Threats from Untrusted Servers 

In scenarios where the central server cannot be fully 

trusted, additional privacy concerns arise: 

Collusion Attacks: A server may collude with selected 

users to isolate and analyze data contributions from others, 

undermining the privacy of individual users. 

Sybil Attacks: Malicious entities may create fake 

identities to exert undue influence over the training process, 

thereby increasing the risk of data exposure. 

Example: In a multi-organizational FL setup, an 

organization could deploy fake user devices to manipulate 

the model or weaken privacy guarantees, enabling it to 

extract sensitive data from other organizations. 

Threats from External Adversaries 

Privacy risks may also originate from external entities 

attempting to interfere with FL operations: 

Eavesdropping: External attackers may intercept 

communications between users and the server, potentially 

extracting sensitive information. 

Man-in-the-Middle Attacks: Adversaries can position 

themselves between users and the server to alter or redirect 

data packets, compromising both the privacy and integrity 

of the model. 
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Example: In a mobile FL application, an attacker 

intercepting data updates may infer a user’s browsing 

history or app usage, leading to a privacy breach. 

Threats from Honest-but-Curious Entities 

Even entities adhering to standard protocols may 

unintentionally compromise privacy: 

Gradient Leakage: Shared gradients can reveal 

sufficient information to reconstruct local data, posing a 

significant risk even in the absence of malicious intent. 

Data Reconstruction: Analyzing aggregated updates 

may allow for the reconstruction of original data, especially 

if updates are not sufficiently obfuscated. 

Example: In FL systems for smart home devices, 

gradient updates may inadvertently reveal patterns that 

indicate users' daily routines or presence at home. 

2.5. Integration of Multiple Privacy-Preserving 

Strategies 

Achieving comprehensive privacy in FL often 

necessitates the integration of multiple tools and 

technologies. This approach involves examining the 

following: 

Layered Approaches: Implementing strategies such as 

MPC within TEEs to enhance security. 

"Privacy in Depth": Principles wherein multiple 

privacy mechanisms, such as MPC, DP and TEEs, are 

combined to ensure that even if one layer fails, others can 

maintain security [5]. 

3. Techniques to enhance privacy in FL 

Figure 3 shows the various tools and technologies that 

can be classified to implement privacy protection against 

identified threats in section 2 These mechanisms are 

designed to increase data security in federated learning 

systems by reducing vulnerabilities and addressing 

potential privacy risks. Each tool contributes to a robust 

privacy framework, ensuring data confidentiality and 

integrity throughout the federated learning process. 

 

 

Figure 3. Tools and technologies to enhance privacy in FL 

3.1. Differential Privacy (DP) 

Over the past decade [6, 7] a wide range of techniques 

has been developed for differentially private data analysis, 

primarily under the assumption of a centralized setting, 

where raw data is collected by a trusted entity that applies 

the necessary perturbations to ensure privacy. In the 

context of federated learning, the coordinating server 

typically assumes the role of the trusted implementer of the 
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DP mechanism, ensuring that only privatized outputs are 

provided to model developers or analysts. However, 

minimizing the reliance on a trusted party remains a key 

objective. Types of Differential Privacy: 

Central Differential Privacy (CDP) 

In this model, a trusted server collects raw data and 

applies noise to the outputs to preserve privacy. This 

approach assumes the server is reliable and can securely 

implement the differential privacy mechanisms. DP 

introduces controlled randomness to prevent the disclosure 

of individual data. In federated learning, DP is typically 

implemented at the user level, ensuring that individual user 

contributions remain indistinguishable. 

Local Differential Privacy (LDP) 

LDP [8] is a privacy-preserving framework where users 

add noise to their data before sharing it, minimizing the 

reliance on a central server's security. This approach 

enhances user privacy by reducing central points of 

vulnerability. However, ensuring that the data remains 

useful while being private is a significant challenge under 

LDP. Tech giants like Google and Apple have adopted 

LDP for secure data collection, acknowledging its potential 

in safeguarding user information [9]. The main challenge 

lies in achieving privacy without sacrificing the utility of 

the data. This involves a delicate balance between the 

amount of noise added, the computational resources 

required, and the overhead in communication. Efficient 

implementation of LDP is crucial for its success, as it must 

maintain the integrity and usefulness of the data while 

providing robust privacy protections. The trade-offs 

between privacy, utility, and efficiency are at the core of 

LDP's challenges and continue to be an area of active 

research and development. 

Distributed Differential Privacy (DDP) 

This model combines elements of both Central and 

Local DP, employing techniques such as secure 

aggregation and shuffling to minimize reliance on a central 

server while preserving data utility. DDP often leverages 

MPC or trusted execution environments (TEE) to enable 

privacy-preserving computations through secure data 

processing [10]. 

Hybrid Differential Privacy (HDP) 

Integrates different trust models to optimize privacy and 

efficiency. By allowing multiple privacy models to coexist, 

hybrid mechanisms achieve greater flexibility compared to 

purely local or centralized approaches [11]. 

This methodology integrates disparate trust paradigms 

by categorizing users based on their preferences for trust 

frameworks. The pioneering HDP-VFL [12] represents the 

inaugural hybrid DP architecture for VFL, which facilitates 

the collaborative training of a generalized linear model 

(GLM) within the VFL environment at a nominal expense 

relative to the hypothetical non-private VFL. It employs 

mechanisms such as Secure Multi-party Computation 

(SMC) and Homomorphic Encryption (HE) to ensure the 

preservation of privacy. 

Distributed DP via Secure Aggregation: Ensures that 

only aggregated results are accessible, preserving privacy 

without exposing intermediate data [13]. 

Secure Shuffling: Secure shuffling involves collecting 

multiple messages from users and ensuring that the server 

can only observe an unordered set of messages, thereby 

preserving anonymity. The methods employed in secure 

shuffling often overlap with those used in secure 

aggregation. Secure mixers, which are frequently discussed 

within the field of multi-party secure computing, are 

sometimes referred to as hybrid networks. Trusted 

computation techniques have also been explored in this 

context, with large-scale hybrid networks implemented in 

systems like the Tor network [14]. 

Distributed DP via Secure Shuffling: Involves 

randomizing inputs to prevent the server from linking data 

to individual users, enhancing privacy [12]. 

3.2. Trusted Execution Environments (TEEs) 

TEEs support secure execution of certain components in 

FL by operating within a trusted enclave, which ensures 

confidentiality, integrity, and verifiable execution. 

Different TEE implementations, such as Intel SGX-enabled 

CPUs [15] and Sanctum for RISC-V architectures [16], 

vary in their security capabilities. TEEs face limitations in 

memory and computational resources, prompting research 

to extend TEE functionalities, such as integrating them 

with GPUs for improved machine learning performance 

[17]. Key features of TEEs include confidentiality, where 

execution states are kept private unless intentionally 

disclosed; integrity, where execution remains unaffected 

except by defined inputs; and attestation, where a TEE can 

prove to remote parties the exact code and initial conditions 

running within it. TEEs are particularly valuable in cases 

where kernel-level OS vulnerabilities are present, providing 

robust privacy protections via hardware-level assurances 

[18]. As hardware-based machine learning solutions gain 
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popularity, systems leveraging TEEs, such as Intel SGX, 

are becoming essential for privacy-preserving FL. 

Solutions like ShuffleFL [19] and FLASH [20] utilize 

hardware-optimized structures to enhance gradient 

preservation and accelerate cross-silo FL, while platforms 

like FLATEE [21] reduce training and communication 

times by implementing TEEs. Furthermore, hardware 

acceleration using field-programmable gate arrays (FPGAs) 

[22], GPUs [23], and CPUs [24] is increasingly crucial to 

addressing the computational demands of privacy-

preserving federated learning (PPFL), especially for 

homomorphic encryption tasks, which has greatly advanced 

the efficiency and practical implementation of FL systems. 

FPGA-Based 

Field-Programmable Gate Arrays (FPGAs) [25] are 

adaptable semiconductor circuits that can be reprogrammed 

post-manufacturing to accelerate a variety of tasks, 

including conventional machine learning and cryptography 

[26, 27]. Recently, FPGAs have been applied to enhance 

the efficiency of VFL with Homomorphic Encryption (HE), 

particularly by offloading computationally intensive 

modular multiplication operations used in the Paillier 

cryptosystem [28]. Yang et al. [29] introduced an FPGA-

based framework for VFL that streamlines this process, 

while FLASH [20] expanded this approach to support a 

wider range of cryptographic functions within the Paillier 

system. By enabling custom circuit design with fine-

grained control and ample on-chip memory, FPGAs 

optimize HE operations through efficient pipelining and 

large data storage, significantly improving the 

computational performance of HE in cross-silo federated 

learning setups. 

GPU-Based 

GPUs, known for their parallel processing capabilities, 

are instrumental in expediting the training of machine 

learning models. Specifically, in the realm of HE applied to 

VFL, a GPU-accelerated approach named HAFLO has 

been introduced for logistic regression task [23]. This 

method enhances the efficiency of homomorphic 

operations, reducing the computational burden of the 

Paillier cryptosystem and improving data handling on 

GPUs. Further advancements in GPU utilization for HE-

based Privacy-Preserving Federated Learning (PPFL) are 

also noted, with significant improvements in processing 

speed being achieved through memory optimizations [30, 

31]. Despite these advancements, GPUs face challenges in 

handling large numerical operations required for HE, which 

hinders their potential for high-performance HE 

computations [32]. Nevertheless, the development of GPU-

optimized schemes like CARM [33], intended for IoT 

applications, indicates a positive trajectory for the 

integration of HE in PPFL systems [34], although 

adaptation to federated settings remains a work in progress. 

CPU-Based 

In 2021, Intel introduced the Intel Homomorphic 

Encryption acceleration library (HEXL) [35], which 

marked a significant shift from the reliance on specialized 

hardware like GPUs and FPGAs for homomorphic 

encryption. HEXL utilizes the SIMD capabilities and Intel 

AVX-512 instructions of Intel CPUs to accelerate Fully 

Homomorphic Encryption (FHE), making it more 

accessible and efficient. Specifically, HEXL has optimized 

operations such as modular exponentiation within Partial 

Homomorphic Encryption (PHE) in the context of 

federated learning. The survey discussed highlights 

inefficiencies in both PHE and FHE, with PHE depending 

on modular operations and FHE on more complex 

polynomial-based operations [36]. While algorithmic 

techniques like FFT and NTT can improve the speed of 

polynomial operations, challenges in accelerating these due 

to computational complexity, memory demands, and 

limited generalizability remain. HEXL's introduction is a 

step towards addressing these inefficiencies by leveraging 

widely available CPU instructions for homomorphic 

encryption acceleration. 

3.3. Cryptographic Methods 

Secure Multi-Party Computation (SMPC) [37] 

The goal of secure computation is to perform 

calculations on distributed data while revealing only the 

results to authorized parties. MPC, a field in cryptography, 

allows multiple participants to jointly compute a function 

over their private inputs without revealing the inputs 

themselves. Although originally a theoretical concept, MPC 

has evolved into a practical technology that enables secure 

machine learning operations [38]. Cryptographic solutions 

frequently operate within restricted data ranges, which 

presents difficulties when working with real numbers. To 

address this, techniques such as normalization and precise 

quantization are required to adapt machine learning models 

for secure environments. Specialized protocols are being 

developed to optimize operations for particular 

applications, including linear regression and neural network 

training. MPC protocols have been employed in cross-silo 
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environments to facilitate secure collaborative computation. 

Additionally, reviews of homomorphic encryption software 

libraries, along with criteria and features to consider when 

selecting an appropriate library, are available in the 

literature [39]. 

Two or more participants collaborate to simulate, though 

cryptography, a fully trusted third party who can: 

Compute a function of inputs provided by all the 

participants; 

Reveal the computed value to a chosen subset of the 

participants, with no party learning anything further. 

Private Information Retrieval (PIR): Private 

Information Retrieval allows users to query databases 

without revealing the content of the query to the server. 

PIR can be achieved through computational or information-

theoretic approaches, each offering distinct advantages and 

limitations. Approaches to PIR using MPC are typically 

divided into two categories: computational PIR (cPIR), 

where a single party handles the entire server-side protocol, 

and information-theoretic PIR (itPIR) [40], which requires 

multiple non-colluding parties to execute the server-side 

protocol. 

Homomorphic Encryption (HE) 

HE facilitates computations directly on encrypted data, 

ensuring that the data remains secure throughout the 

computational process. HE can be categorized into several 

types, including fully homomorphic encryption (FHE) [36] 

and partial schemes, such as ElGamal and Paillier, which 

support specific operations like addition or multiplication. 

Approaches proposed by Reyzin et al. and and Roth et al. 

[41, 42]. have employed these techniques to enable joint 

computations across multi-device or cross-device 

environments, utilizing incremental homomorphic schemes. 

In the context of federated learning, a significant challenge 

is encryption key management, which can be addressed 

through distributed key management systems or by relying 

on non-collusive trusted third parties [43]. 

Enables a party to compute functions of data to which 

they do not have plain-text access, by allowing 

mathematical operations to be performed on ciphertexts 

without decrypting them. Arbitrarily complicated functions 

of the data can be computed this way (“Fully 

Homomorphic Encryption”) though at greater 

computational cost. 

Homomorphic Encryption: This method allows 

computations on encrypted data, ensuring that sensitive 

information remains confidential during model training 

[44]. 

Secret Sharing (SS) 

Secret sharing is a cryptographic technique in which a 

secret is divided into N distinct shares, allowing 

reconstruction only when a sufficient subset of these shares 

is combined. This approach has been applied in studies 

such as [45-47]. The t-out-of-n method [48] illustrates how 

a data element (or secret) S can be partitioned into n 

segments, enabling reconstruction from any subset of m 

parts. Critically, possessing only m−1 parts reveals no 

information about S. This method facilitates the design of 

robust key management systems within cryptographic 

frameworks, supporting secure and reliable operational 

continuity. 

Integrate HE with SS 

Numerous studies integrate homomorphic encryption 

(HE) with secure secret sharing (SS) to prevent the leakage 

of intermediate computational results to unauthorized 

clients. For example, Pivot [49] combines SS and HE to 

ensure the confidentiality of intermediate results during the 

aggregation of general tree models, including random 

forests (RF) and gradient-boosted decision trees (GBDT). 

In the Pivot framework, HE is primarily utilized to 

facilitate local computations on the client side, while SS is 

employed selectively in cases where HE lacks the 

necessary functional capacity. This hybrid approach not 

only enhances security but also significantly improves 

computational efficiency, particularly in applications 

involving vertical tree models. 

Secure Aggregation: SA enables multiple users to 

submit values to a central server, which can only access the 

aggregated result without revealing individual inputs. 

Techniques utilized for secure aggregation include 

incremental masking [50], threshold homomorphic 

encryption [51], and secure multi-party computation [52]. 

3.4. Gradient Perturbation 

Perturbation methods [53] are a set of techniques used in 

machine learning to enhance data privacy without requiring 

knowledge of the underlying data distribution. These 

methods work by adding random noise to the model's 

parameters, which makes the modified data statistically 

similar to the original, thus preserving privacy in a manner 

comparable to DP. An example of this is the Privacy-

Encoding based FL (PEFL) model  [54], which integrates a 

long short-term memory-autoencoder with perturbation 
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encoding to create a federated learning model for detecting 

network intrusions. This approach is effective in preventing 

attacks that aim to reconstruct the original data or infer 

membership information by introducing randomness into 

the model's parameters, much like DP. However, unlike 

DP, perturbation methods have the advantage of preserving 

the accuracy of the learning process, as the noise can be 

subtracted out by the server to recover the true gradients. 

Despite their effectiveness, these methods are not immune 

to probabilistic privacy attacks. The three main perturbation 

techniques currently in use are Differential Privacy detailed 

in subsection 3.1, Additive Perturbation, and Multiplicative 

Perturbation, each providing a different mechanism for 

securing data privacy while enabling accurate machine 

learning models. 

Additive Perturbation 

Additive perturbation techniques [55] are 

straightforward, efficient methods for ensuring data privacy 

without the need for understanding the data's distribution. 

They work by adding random noise, drawn from specific 

distributions like uniform or Gaussian, to the original data. 

This process helps to maintain the statistical properties of 

the data while protecting its privacy. Such techniques are 

used in privacy-preserving data mining to add random 

disturbances to data, thereby preserving its probabilistic 

characteristics. The goal is to achieve a balance between 

data privacy and integrity, introducing enough noise to 

protect the data but not so much that it obscures the original 

signal, ensuring patterns can still be accurately estimated. 

While additive perturbation methods are cost-effective, 

easy to implement, and can be applied to individual data 

points, they do have drawbacks. Specifically, they can 

reduce the overall utility of the data and may be susceptible 

to techniques that aim to reduce noise and potentially 

compromise privacy. 

Multiplicative Perturbation 

A multiplicative perturbation approach [56] employs 

models resistant to transformation, such as rotation and 

translation, allowing for the direct use of altered data 

without additional random noise. This technique effectively 

shifts the original data into a new domain while 

maintaining critical information pertinent to the task and 

model, ensuring the model's precision. Traditional methods 

that solely rely on additive perturbation often fall short; 

however, integrating both additive and multiplicative 

perturbations overcomes these shortcomings, as evidenced 

in recent studies [57]. The POLARSGD protocol, which 

stands for Private Optimization and Learning Algorithm 

with Stochastic Gradient Descent, incorporates this dual 

perturbation strategy to conceal client gradients before they 

are sent to various servers for model development. 

In response to the inherent challenges, the study presents 

DISTPAB, a distributed perturbation approach aimed at 

bolstering privacy within Hierarchical Federated Learning 

frameworks. DISTPAB capitalizes on the uneven 

distribution of resources in such networks to decentralize 

the privacy protection process, thus reducing computational 

strain. It achieves this by employing independent Gaussian 

random projections to mask data on each Internet of Things 

(IoT) device, allowing for the training of a Deep Neural 

Network model at the server level with data from IoT 

clients [58]. This method primarily assigns the 

computational load to the coordinator, which is typically 

resource-rich, thereby lessening the burden on IoT devices. 

Comparative studies, including those involving support 

vector machines and additive noise for differential privacy, 

have shown that this method is more effective than other 

privacy-preserving techniques. 

3.5. Split Learning 

The split learning configuration is illustrated in Figure 

4(a), which presents the standard Vanilla split learning 

setup. An alternative configuration, where the labels are 

kept private, is demonstrated in Figure 4(b), referred to as 

U-shaped split learning. Additionally, Figure 4(c) displays 

the arrangement for split learning with vertically 

partitioned data. Each figure provides a unique setup to 

facilitate different aspects of split learning while ensuring 

data privacy and integrity. 
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Figure 4. Split Learning [59] 

Vanilla split learning 

Split learning presents a new approach to collaborative 

machine learning, distinct from traditional data partitioning 

and communication-focused methods. Instead of each 

client solely working on separate model components and 

communicating results, split learning distributes the model 

itself between clients and a server. Each client processes 

data through a deep neural network up to a predetermined 

point, known as the "cut layer." At this layer, outputs, or 

"smashed data," are passed on to the server (or occasionally 

another client), which completes the forward computation. 

This setup not only facilitates distributed model training 

and inference but also enhances privacy by minimizing the 

need to share raw data. During backpropagation, gradients 

calculated from the server's end are sent back to the cut 

layer, allowing clients to handle backpropagation locally. 

This iterative process continues until convergence, enabling 

privacy-preserving training as clients avoid direct data 

exchange [60]. 

U-shaped split learning 

Beyond its primary configuration, split learning can 

adapt to unique needs. For example, in scenarios where 

label privacy is essential, a U-shaped configuration allows 

training without label sharing. In this setup, clients process 

the forward pass up to the cut layer, after which the server 

completes computation but returns the output back to the 

client, avoiding any exchange of sensitive label 

information. This method, particularly advantageous for 

privacy-sensitive tasks like medical diagnosis, ensures 

confidentiality by localizing gradient generation and 

backpropagation on the client’s side [59]. 

Vertically partitioned data for split learning 

The flexibility of split learning is further demonstrated 

in configurations with vertically partitioned data, where 

multiple clients contribute distinct features for model 

training. Each client trains a portion of the model up to its 

respective cut layer, and the server combines outputs to 

complete the forward pass. This approach, called splitNN 

[61], performs collaborative model training without sharing 

raw data across clients or with the server. Additionally, 

split learning facilitates the matching of client-side and 

server-side model components to optimize model selection, 

as seen in ExpertMatcher [62]. To address this, methods 

like NoPeek SplitNN [63] reduce data correlation between 

inputs and transmitted outputs, enhancing privacy while 

maintaining model performance. Further techniques, such 

as selective pruning of client-side activations, have been 

proposed to limit information exchange. However, ensuring 

formal privacy guarantees for split learning remains a 

challenge. 

3.6. Gradient Compression Methods 

In federated learning, client devices often face 

limitations in bandwidth and energy, creating challenges in 

communication efficiency. Adapting centralized 

compressed communication schemes to decentralized 

environments without affecting convergence is a significant 

research focus, along with developing algorithms that 

naturally produce sparse updates. Communication remains 
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a primary bottleneck, with consumer network speeds often 

lower and less reliable than datacenter connections. Efforts 

to reduce communication requirements through Federated 

Averaging [64] combined with sparsification or 

quantization have shown promising results, but questions 

remain on achieving optimal trade-offs between 

communication and accuracy. Recent theoretical studies 

[65] explore the minimum possible rates for accuracy under 

communication constraints, but practical applications 

remain elusive due to the complex influence of 

optimization algorithms. Compression efforts target three 

main areas: reducing client-server communication, 

minimizing model broadcast sizes, and optimizing local 

training computation. 

Compression objectives, informed by the resource 

limitations of contemporary devices in computation, 

memory, and communication, span several goals: 

Gradient compression – minimizing the data 

communicated from clients to the server, which is used to 

update the global model. 

Model broadcast compression – reducing the size of 

the model broadcast from the server to clients, which serves 

as the starting point for local training. 

Local computation reduction – modifying the training 

algorithm to enhance the computational efficiency of local 

training. 

These objectives collectively aim to address the resource 

constraints prevalent in federated learning scenarios. 

Quantization 

Existing noise addition mechanisms assume adding real-

valued Gaussian or Laplacian noise on each client, and this 

is not compatible with standard quantization methods used 

to reduce communication. 

Sparsification 

To address privacy concerns, anonymization techniques 

that remove identifiable information from datasets are 

employed, which helps protect user privacy while 

supporting effective model training. 

Anonymization: Removing identifiable information 

from datasets helps protect user privacy while still allowing 

for effective model training [66]. 

These tools and technologies facilitate secure, efficient, 

and privacy-preserving computation within federated 

learning frameworks. They ensure the protection of 

sensitive data while supporting robust machine learning 

and statistical analysis, thereby enabling collaborative data 

processing without compromising privacy. 

3.7. Verification in Federated Learning 

Zero-Knowledge Proofs (ZKPs) 

ZKPs enable one party to prove to another that a 

computation was performed correctly without revealing the 

underlying data. This ensures verifiable and secure 

computations, which is crucial in federated learning 

environments. Xie et al [67] introduced a ZKP system 

named Libra, which achieves linear complexity for the 

prover by increasing the size of the proof and the time 

required for verification. 

Remote Attestation and TEEs 

TEEs can demonstrate that computations are executed 

securely as expected within a protected environment. This 

ensures that data is processed without tampering, enhancing 

trust in federated learning systems. In addition to ZKPs, 

TEEs support remote verification by ensuring that 

computations are conducted as expected within a secure, 

isolated environment. This guarantees that data is processed 

without tampering, thereby enhancing trust in federated 

learning systems [59]. 

4. Challenges in Privacy Preservation and Open 

Problems 

Despite advances, challenges remain, including 

balancing privacy, utility, and communication efficiency, 

developing robust privacy guarantees against sophisticated 

attacks, and ensuring graceful degradation of privacy when 

parts of the system fail. 

Inference Attacks: Attackers can exploit shared model 

parameters to reconstruct sensitive data, necessitating 

robust defenses. 

Malicious Server or Client Risks: A compromised 

server can manipulate aggregated data, leading to privacy 

breaches. 

Fairness vs. Privacy: Balancing individual model 

quality and privacy remains a challenge, as traditional 

aggregation methods may expose sensitive information  

[68]. 

4.1. Protection Against External Malicious Entities 

This section assumes the presence of a trusted server and 

explores various challenges and open issues related to 

privacy assurance against external malicious entities. These 

entities include hostile users, analysts, and devices that may 

use trained models or any combination thereof. Adversarial 

users can inspect all messages received from the server 
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during periods of participation, including model iterations. 

Adversarial analysts can scrutinize the data sequences 

across multiple training sessions with varying 

hyperparameters, and in cross-device federated learning 

environments, malicious devices can access the final model 

as a white-box or black-box entity. Therefore, to effectively 

guard against external adversaries, it is essential first to 

assess what information can be inferred from intermediate 

iterations and the final model. 

Final Model Adoption 

In federated learning, assessing model sensitivity to 

attacks is crucial due to the broader attack surface, as 

adversaries may gain access to the model through the 

server. The server, however, can regulate adversarial access 

at different training stages, potentially controlling their 

impact. For traditional (non-federated) models, 

understanding attack sensitivity involves simulating attacks 

on a proxy dataset that mimics user data. Although useful, 

this approach often relies on impractical assumptions, and 

setting a worst-case sensitivity bound remains challenging 

[69]. Current research [70] seeks theoretical guarantees that 

would indicate if simulated attacks fail to reveal privacy 

breaches, stronger attacks are unlikely to succeed, though 

further work is needed in this area. 

Federated learning introduces unique opportunities for 

both measuring and defending against attacks. Server-

controlled access during training allows for innovative 

methods to test model sensitivity. Such methods could 

inform adaptive defenses that adjust protections in real-

time to mitigate adversarial influence effectively while 

preserving model efficiency. 

Training with Central Differential Privacy 

User-level differential privacy can be applied during the 

iterative training process in FL to limit or eliminate what 

can be learned about individuals from the model iterations 

(or the final model). This approach involves the server 

clipping individual updates, aggregating them, and adding 

Gaussian noise to ensure the model does not align closely 

with any single user’s updates. Advanced composition 

theorems or methods like the moments accountant can be 

used to track the overall privacy budget across rounds, 

particularly when employing subsampled Gaussian 

mechanisms. However, adding noise may reduce model 

accuracy, especially when data is sparse, leading to a trade-

off between privacy and accuracy. Solutions to this trade-

off include aggregating more private data, designing 

privacy-preserving model architectures, or incorporating 

priors that impact the domain of private data. 

In cross-device FL, training samples can vary 

significantly across devices, making it important to 

discover adaptive methods to limit user participation and 

adjust model parameters. Unlike record-level DP, the trade-

off between accuracy and privacy for user-level DP is not 

well understood, especially when contributions vary greatly 

across users. Recent advances have described this trade-off 

for learning discrete distributions under user-level DP, but 

further research is needed to fully comprehend it. 

Distinguishing between adversarial users who can 

observe intermediate iterations and adversarial analysts 

who can only view the final model is important. Even if 

central DP can protect against both, it may require different 

privacy parameters, with stronger guarantees for analysts, 

as adversarial users have access to more information. This 

approach, known as "privacy amplification through 

iteration," has been studied by Feldman et al [71], 

especially in convex optimization contexts, although its 

application in non-convex scenarios remains uncertain. 

Enhancing Privacy in cross-devices FL setting 

▪ Providing formal privacy guarantees (ϵ,δ) in a 

cross-device FL system is challenging because: 

▪ The set of eligible users (the underlying 

dataset) is dynamic and unknown in advance. 

Participants in FL can opt out of the protocol at any 

time. 

Therefore, protocols must be designed to be self-

accounting and reliant on local participation decisions 

without assuming the server is aware of which users are 

online. They must also balance privacy with efficiency. 

While recent research suggests that these constraints are 

manageable, building an end-to-end protocol that operates 

effectively in production FL systems remains a significant 

challenge. 

Concealing Iterations 

In conventional FL systems, models are iteratively 

updated after each training session, with the updated 

versions visible to multiple actors, including the server and 

users. However, tools such as TEEs can potentially conceal 

these iterations from users. The server can verify that the 

expected FL code has been executed within the TEE, 

ensuring confidentiality and sending an encrypted model to 

be decrypted only within the TEE. Unfortunately, TEEs 

may not be widely available, particularly in end-user 

devices like smartphones, and might lack the power to 
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handle the computational needs of training. However, as 

TEE capabilities improve, methods for partial computation 

offloading while maintaining integrity may mitigate these 

limitations. 

Another approach within the MPC framework involves 

encrypting model parameters before sending them to users. 

Thanks to homomorphic encryption, users can perform 

updates on the encrypted models without decrypting the 

parameters. The challenges here include ensuring that 

servers do not decrypt the data before aggregation and 

improving performance, as advanced systems still require 

high computational resources. 

Iterative Analysis of Dynamic Data 

Analysts often need to analyze data streams and provide 

dynamically updated models that incorporate past data 

while accurately predicting future data. Without privacy 

concerns, this can be achieved by retraining models as new 

data arrives. However, privacy considerations mean that 

updates must be frequent enough to maintain both privacy 

and accuracy. Extending differential privacy techniques for 

dynamic databases to FL environments to enable private 

learning over time-series data remains an ongoing 

challenge. 

Preventing Model Theft and Misuse 

Developers may wish to restrict access to their machine 

learning models to prevent misuse or theft. Techniques for 

protecting models during inference often mirror those used 

to conceal them during training, with TEEs and MPC being 

key tools. However, challenges include balancing the 

benefits of on-device inference with ensuring that 

cryptographic technique keys do not compromise security. 

Furthermore, research indicates that adversaries can 

sometimes reconstruct models solely through access to 

inference APIs, raising further concerns about protecting 

models deployed across millions of devices. 

4.2. Protection against Untrusted server 

In the previous section, we assumed that there is a 

trusted server that can coordinate the training process. In 

this section, we explore a scenario where we protect a 

potentially hostile server. In particular, we begin by 

examining the challenges related to these settings and 

studying existing works, and then outline open issues and 

how to use the methods discussed. 

Communication channels 

In a cross-device FL configuration, we are dealing with 

a server that has significant computing resources and a 

large number of users that (1) can only communicate with 

the server (such as a star network topology) and (2) may be 

limited in connectivity and bandwidth. be limited, we face; 

These conditions create specific requirements for the 

implementation of a specific trust model. In particular, 

users without dependence on the server do not have an 

obvious way to establish secure channels between 

themselves, as shown by Reyzin et al [41]. In practical 

settings that assume honest (or at least semi-honest) 

behavior on the part of the server in the key distribution 

phase/phase in scenarios requiring private channels 

between users, cryptographic solutions based on MPC 

methods are included. An alternative assumption could be 

to include an additional party or a public bulletin in a 

model that is known by users and is sure not to collude with 

the server. 

Sybil Attacks 

Instead of trusting the server in private communication 

channels, participants in cross-device FL must trust the 

server to form groups of users fairly and honestly. An 

active malicious user in control of the server can clone a 

large number of fake user devices (a Sybil attack) or can 

select previously vulnerable devices from the pool of 

available devices. Either way, an adversary can have more 

control over the participants in a federated learning round 

than the number of devices expected to be in the 

population. This makes it much easier to break the usual 

assumption in secure multiparty computing that at least a 

certain number of devices are true, thereby weakening the 

security of the protocol. Even if the security of the protocol 

itself remains intact (for example, if its security is based on 

a different source of trust, such as a secure enclosure), there 

is a risk that if a large number of users' model updates are 

known or controlled by an adversary. That is, the privacy of 

the remaining users' updates is undermined. Note that these 

considerations can also apply to TEE contexts, for example, 

a TEE-based mixer can also be vulnerable to a Sybil attack. 

If an honest user's input is combined with known inputs 

from fake users, the adversary can directly identify the 

honest user's value in the combined output. 

Note that in some cases, it may be possible to prove in 

one round between users that they are all running the 

correct protocol, for example, if there are secure fences on 

user devices and users can verify each other remotely. In 

these cases, it may be possible to establish privacy for all 

honest participants in the round, for example by verifying 

that secure multilateral computing protocols are strictly 
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followed, distributed differential privacy contributions are 

cryptographically and correctly added, etc. Even if the 

model updates themselves are known or controlled by the 

adversary. 

Limiting the ability of the server 

Considering that the goal of FL is to build a model of 

general patterns in users' data, one of the main goals of 

privacy protection is to reduce and limit the server's ability 

to reconstruct a particular user's input data. This includes a 

formal definition of (a) the representation of user data that 

is provided to the server as a result of FL execution, and (b) 

the extent to which privacy information is leaked from such 

representation. In FL, the server can collect user logs, while 

somehow hiding each user's contribution. This can be done 

in a number of ways, usually involving the use of some 

differential privacy concept. There is a wide range of these 

methods, each with its own weaknesses, particularly in FL, 

where central DP is limited by the need to access a trusted 

central server. 

5. Future Directions 

Privacy Requirements for Specific Applications: In 

Federated Learning, user data can be complex and 

multidimensional, often necessitating significant noise to 

ensure differential privacy. However, if users do not 

prioritize protection against all possible inferences, privacy 

constraints can be relaxed to reduce the level of noise 

added. For instance, data from a smart thermostat 

programmed to turn on or off based on occupancy patterns 

could reveal sensitive information, such as typical return 

times of residents. Conversely, data indicating whether 

residents were asleep during specific hours might be less 

sensitive. 

The Pufferfish privacy framework [72] allows analysts 

to specify which inferences should be protected with 

differential privacy, while less sensitive inferences may not 

require such stringent protection. To ensure that this 

approach provides adequate privacy guarantees, analysts 

must first understand users' privacy preferences by 

gathering and analyzing relevant data. The FL framework 

can be adapted to enable users to specify which inferences 

are permissible, with these preferences processed locally on 

devices or incorporated into the aggregation process. 

Further research is needed to develop tools that integrate 

user preferences into the FL model and meaningfully 

extract preferences from users. 

Updating Models with New Data: How should analysts 

privately update an FL model with new data, and to what 

extent can a model trained on dataset D generalize to a 

similar dataset? 

On the other hand, how well can a model trained 

privately using FL on a dataset called D generalize to 

another dataset that is guaranteed to be similar to D on a 

certain criterion? Given that in FL, samples taken online do 

not cause overfitting, it is likely that such a model can still 

perform well on a new dataset. 

One way to circumvent the problem of privacy fusion is 

to generate synthetic data that can be used indefinitely 

without harming privacy. This is the result of differential 

post-processing privacy guarantees. Augenstein et al. [73] 

have investigated the generation of synthetic data in a 

federated manner. In a dynamic data setting, synthetic data 

can be used repeatedly until it becomes "out of date" with 

new data and needs to be updated. Even after synthetic data 

is federated, updates must be made privately and federated. 

Adapting Differential Privacy Approaches: Can 

differential privacy techniques for dynamic datasets or 

time-series data be adapted for federated learning? 

First, how to query time series data in a federated 

model? By design, the same users are not asked regularly 

and multiple times for updated data points, so it is difficult 

to gather accurate within-subject estimates of the evolution 

of individual data over time. Conventional tools for 

statistical sampling of time series data may be used here, 

but should be used in conjunction with privacy-preserving 

and federated tools. Other approaches include 

reformulating the questions so that each sub-question 

within a topic can be fully answered on the device. 

User perception Behavior to Derive Privacy Settings: 

Any strategy that requires users to define their privacy 

standards must include behavioral and field studies to 

ensure users are aware of their privacy preferences. This 

approach should involve educating users and assessing 

their understanding of privacy practices and data usage 

details. For federated educational applications, it is 

essential to confirm that average users can meaningfully 

grasp the privacy assurances provided by these privacy-

preserving learning processes. Once this understanding is 

achieved, researchers can begin to extract users' privacy 

preferences. 

This process can be conducted across various settings, 

including behavioral labs, large-scale field experiments, or 

small focus groups. Care must be taken to ensure that 
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participants providing data about their preferences are both 

informed and representative of the broader population. 

While behavioral research has shown that individuals often 

behave differently in public versus private settings, there is 

limited research on how to elicit privacy preferences. 

Advancing this area is vital for broader adoption of private 

federated learning in the future. 

6. Conclusion 

Protecting user data privacy requires a dual focus: 

understanding what operations are performed on the data 

and how these operations are conducted, particularly 

regarding who has access to the data or can influence it. 

Addressing the "what" involves techniques such as data 

minimization and differential privacy, which aim to reduce 

the exposure of sensitive information. However, applying 

these techniques in real-world scenarios remains 

challenging, especially when training machine learning 

models on diverse and dynamic datasets managed by 

independent actors. 

To tackle the "how," approaches such as SMPC, HE, 

and TEEs are employed. While MPC has seen practical 

implementation, it can still be resource-intensive, and 

establishing secure and reliable TEE environments 

continues to pose significant challenges. Effective privacy-

preserving solutions must integrate these methods to ensure 

that privacy is maintained, even if one of the components 

fails. 

Distributed differential privacy combines both the 

"what" and "how" strategies, offering a balanced approach 

that ensures high accuracy while protecting data privacy, 

even against honest-but-curious servers. Additionally, 

bidirectional verifiability, enabled through techniques such 

as zero-knowledge proofs and TEEs, allows participants to 

verify the correctness of computations, thereby enhancing 

trust. However, addressing risks posed by potentially 

malicious servers remains a critical area for ongoing 

development. 

This paper tried to present a structured approach to 

analyze privacy threats in federated learning. By 

categorizing threats based on the roles and capabilities of 

different actors, strong defense mechanisms can be 

designed and implemented. Addressing these privacy 

concerns requires a combination of technical measures, 

including secure computing, differential privacy, and 

encryption, to ensure that FL systems can be securely 

deployed in a variety of applications. Understanding these 

threat models enables researchers and practitioners to 

develop comprehensive strategies to protect user data and 

support the safe and effective use of federated learning in 

various domains. 
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