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This study focuses on predicting cardiovascular disease (CVD) mortality 

using various machine learning (ML) techniques. A diverse set of parameters 

from different categories within the Sleep Heart Health Study (SHHS) dataset 

is leveraged, and ML techniques including LR, KNN, SVM, RF, ETC, and 

SGD, are employed. To ensure the reliability of these techniques, 10-fold 

cross-validation is applied. Furthermore, the mutual information technique 

with K-fold stratified cross-validation is used to determine feature 

importance, enhancing the model’s interpretability. The proposed approach 

predicts CVD mortality over a 10 to 15-year period and aims to identify 

influential parameters to facilitate timely interventions and lifestyle 

improvements for patients, ultimately contributing to an increased lifespan. 

Among the algorithms, KNN outperforms others, achieving an accuracy of 

77%, an F1-score of 77%, an AUC of 79%, a sensitivity of 77.34%, and a 

specificity of 76.56%. 

Keywords: CVD mortality, ML, SHHS, Cross-Validation. 

  

1. Introduction 

ccording to the World Health Organization (WHO), 

cardiovascular diseases (CVDs) are the leading cause 

of death worldwide. These conditions include various 

disorders that affect the heart and blood vessels, such as 

coronary artery disease (CAD), stroke, peripheral artery 

disease (PAD), rheumatic heart disease (RHM), congenital 

heart defects, and heart failure (HF). In addition to being the 

primary cause of mortality, CVDs impose a significant 

financial burden on healthcare systems globally due to the 

high costs associated with treatment and long-term care [1]. 

Therefore, CVD diagnosis and prediction as well as CVD 

A 
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mortality prediction is necessary for timely intervention and 

medical work-up. 

Monitoring key health parameters can provide valuable 

insights into predicting CVD mortality. Various studies have 

investigated parameters contributing to disease progression 

and mortality prediction. These factors include smoking [2], 

diabetes [3], demographic characteristics [4], CVD history 

[5], hypertension [6], the use of medications such as aspirin 

[7], and sleep-related parameters like sleep efficiency and 

duration [8, 9]. 

Given the advancements in artificial intelligence (AI) for 

problem-solving, there have been significant developments 

in its application. This is especially true in the medical field 

for disease prediction and diagnosis. Predicting CVD 

mortality is crucial, as a result, many studies have employed 

AI, particularly ML, for predicting disease and mortality. 

The following sections highlight some of the related works 

on CVD mortality studies.  

Martin-Morales et al. (2023) aimed to identify risk factors 

for CVD mortality using the National Health and Nutrition 

Examination Survey (NHANES) dataset. They developed 

three models based on dietary data, non-diet-related health 

data, and a combination of both. The ML models, especially 

Random Forest (RF), consistently predicted CVD mortality 

across these categories. Shapley Additive Explanations 

(SHAP) values highlighted age, systolic blood pressure, and 

various health factors, while fiber, calcium, and vitamin E 

were significant nutritional variables. Their findings 

underscore the importance of integrating health and dietary 

data to improve CVD mortality predictions [10].  

Li et al. (2022) aimed to assess the 10-year cardiovascular 

disease (CVD) mortality risk in individuals with obstructive 

sleep apnea (OSA) using an ML approach. They analyzed 

data from 2,464 patients from the Sleep Heart Health Study 

(SHHS), identifying the top 9 predictive features through 

mutual information analysis. A random forest model was 

then developed and evaluated on a test set of 493 patients, 

achieving an area under the receiver operating curve (AUC) 

of 0.84, with sensitivity and specificity of 81.82% and 

73.94%, respectively. The study found that individuals over 

63 years old and those with severe OSA were at higher risk 

of CVD mortality. Their findings suggest that the random 

forest model could provide a quick and informative 

assessment of future CVD mortality risk in OSA patients [5]. 

Sajeev et al. (2021) aimed to enhance the prediction of 

CVD mortality risk in the Australian population using ML 

models and compared their performance to the traditional 

Framingham model. The dataset was derived from three 

Australian cohort studies: the North West Adelaide Health 

Study (NWAHS), the Australian Diabetes, Obesity, and 

Lifestyle Study (AusDiab), and the Melbourne Collaborative 

Cohort Study (MCCS). The research involved developing 

four ML models to predict 15-year CVD mortality risk, with 

these models achieving a 2.7% to 5.2% improvement in 

prediction accuracy compared to the Framingham model. In 

the aggregated cohort, the ML models achieved an area 

under the curve (AUC) of 0.852, representing a 5.1% 

enhancement in prediction accuracy. Additionally, the 

models demonstrated a net reclassification improvement of 

up to 26%, with better performance observed when stratified 

by sex and diabetes status [3].  

The SHHS dataset is a rich resource and has been widely 

used in numerous studies. It includes a broad range of 

parameters, such as health metrics, demographic 

information, and other personal and health-related data. We 

will now review three studies that have used this dataset to 

predict CVD. 

Park et al. (2021) predicted CVD within ten years in 

patients with sleep-disordered breathing (SDB) using an ML 

algorithm. The model was trained on data from the SHHS, 

incorporating ECG features, clinical risk factors, and AI-

based features. Feature selection was performed using 

statistical analysis and SVM-RFE. The SVM model 

effectively predicted CVD, coronary heart disease (CHD), 

HF, and stroke, achieving high recall and precision, 

particularly in distinguishing CVD-free cases. The results 

demonstrated the model’s potential in predicting CVD 

development in SDB patients [11]. 

Zhang et al. (2020) investigated the link between sleep 

heart rate variability (HRV) and long-term CVD outcomes, 

aiming to improve automatic CVD prediction. They 

analyzed PSG data from 2111 participants over a median 

follow-up of 11.8 years, finding that decreased HRV, 

especially high-frequency components, independently 

predicted CVD outcomes. Using HRV and clinical features, 

they trained a model with the eXtreme Gradient Boosting 

algorithm, achieving 75.3% accuracy. Their findings suggest 

that changes in sleep HRV may precede CVD onset, and 

combining HRV with other factors enhances early prediction 

[12]. 

Zhang and Xu (2023) aimed to predict angina pectoris 

events in middle-aged and elderly individuals by analyzing 

RR interval time series in the resting state. Using data from 

the SHHS involving 2,977 participants over a 15-year 
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follow-up, they developed a Bi-directional Long Short-Term 

Memory (Bi-LSTM) model with an Attention layer. The RR 

intervals from ECG signals were used as inputs, and 

participants were split into training (n = 2,680) and testing 

(n = 297) sets. The model demonstrated strong predictive 

performance, with an accuracy of 0.913. The study suggests 

that RR intervals could serve as valuable predictors for 

angina pectoris, supported by the increasing accessibility of 

heart rate data through wearable devices. 

Studies utilizing the SHHS dataset have focused 

predominantly on predicting the onset of CVDs. However, 

there is relatively less research aimed at predicting CVD 

mortality. One such study [5] aimed to predict CVD 

mortality in patients with sleep apnea using the SHHS 

dataset. This research was limited to individuals with sleep 

apnea and employed ML techniques for mortality prediction. 

In contrast, our study includes a broader population, not 

restricted to sleep apnea patients. We examine a significantly 

wider range of parameters compared to Li et al.’s (2022) 

study, including sleep metrics, disease history, various 

cardiovascular and respiratory medications, and more. Our 

comprehensive study seeks to predict CVD mortality over a 

10 to 15-year period and assess the importance of these 

parameters in mortality prediction.  

In addition to the aforementioned studies, there has been 

limited research focused on predicting CVD mortality, with 

most studies aiming for predictions within a ten-year 

timeframe. However, in our research, we extend the 

prediction period to 10 to 15 years. Unlike the majority of 

studies in this field, we examine a relatively large number of 

mortality-related parameters across various categories. Our 

goal is to predict CVD mortality using ML techniques and 

to identify the key factors influencing this outcome. 

2. Materials and Methods 

2.1. Data 

In our research, we utilize the Sleep Heart Health Study 

(SHHS) dataset, a prospective cohort study conducted by the 

National Heart, Lung, and Blood Institute aimed at 

identifying sleep-related breathing disorders in individuals 

over 40. The SHHS1 dataset was collected from 6,441 

participants between November 1, 1995, and January 31, 

1998, while SHHS2 involved 3,295 participants from 

January 2001 to June 2003, with CVD outcomes gathered 

until 2011. The study primarily investigated the 

relationships between sleep-disordered breathing and CVD 

outcomes [13].  

Our focus is on the SHHS1 dataset, which comprises a 

rich array of categories. The parameters that are utilized in 

this research are detailed in Table 1. The SHHS1 dataset 

includes data from 5,804 individuals. ML algorithms are 

used for binary classification, categorizing individuals into 

either deceased or surviving classes. Some parameters have 

missing values for certain individuals; after excluding those 

with missing data, 3,516 individuals remain for analysis. 

Among these, only 256 individuals died due to CVD, while 

the rest have survived, resulting in imbalanced labels. To 

balance the labels, we employ under-sampling, selecting the 

data of 256 deceased individuals along with 256 randomly 

selected surviving individuals for further analysis. 

Table 1 

Description of categories and parameters. 

Categories Parameters 

Demographics Age, sex, race, ethnicity 

Anthropometric measurements BMI, neck circumference, hip circumference, waist circumference 

Medical history of general condition Alcohol, heavy smoker, cigarette pack-years 

Medical history of disease CVD History, stroke history, Congestive heart failure, history of sleep apnea, Diabetes history 

Medical history of sleep parameters Sleep efficiency, total sleep time, WASO, sleep latency, total time in bed 

Laboratory test results Triglycerides level, blood cholesterol, HDL 

Lung Function measurements FVC, FEV1 

Polysomnography measurements Obstructive apnea-hypopnea (Oahi) 

Medications ALPHA1, ANAR1A1, ANAR31, Aspirin, CCB1, CCBIR1, CCBSR1, DIG1, DIURET1, ESTRGN1, HCTZ1, 

HCTZK1, Insulins, ISTRD1, LIPID1, LOOP1, NIAC1, NSAID1, NTCA1, Nitrates, PDEI1, Premarin, 
Progestins, SYMPTH1, TCA1, Thyroid agents, Warfarin 

Physical examination test Hypertension, systolic and diastolic blood pressure  

 

The parameters in Table 1 are defined as follows. BMI 

refers to body mass index. Heavy smoker refers to moking 

at least 20 packs in a life time. WASO refers to wake after 

sleep onset. HDL refers to high-density lipoprotein. FVC 
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refers to forced vital capacity. FEV1 refers to forced  

expiratory volume. ALPHA1 refers to Alpha-Blockers 

without Diuretics. ANAR1A1 refers to Anti-Arrhythmics, 

class 1A. ANAR31 refers to Anti-Arrhythmics, class 3. 

CCB1 refers to any calcium-channel blocker (CCIR or 

CCBSR or CCBT). CCBIR1 refers to Immediate-release 

CCBS = NFIR or DIHIR or VERIR or DLTIR. CCBSR1 

refers to slow-release calcium channel blockers (DLTSR/ 

AMLOD drug) for hypertension and angina treatment. 

DIG1 refers to Digitalis preparations for HF. DIURET1 

refers to diuretics used to treat hypertension. ESTRGN1 

refers to Estrogens, excluding vaginal creams. HCTZ1 

refers to Thiazide diuretics without Potassium-sparing 

agents. HCTZK1 refers to Thiazide diuretics with k-sparing 

agents. ISTRD1 refers to Inhaled steroids for asthma. 

LIPID1 refers to any Lipid-Lowering Medication. LOOP1 

refers to Loop diuretics used for HF. NIAC1 refers to Niacin 

and nicotinic acid. NSAID1 refers to non-steroidal anti-

inflammatory agents. NTCA1 refers to non-tricyclic 

antidepressants other than monoamine oxidase inhibitor. 

Nitrates used for treatment of Angina. PDEI1 refers to 

Phosphodiesterase inhibitors. Premarin used for treatment 

of menopausal symptoms. Progestins refers to Synthetic 

progesterone. SYMPTH1 refers to sympathomimetics, oral 

and inhaled, for treatment of asthma. TCA1 refers to 

Tricylic anti-depressants. Thyroid agents used to treat 

thyroid-related conditions. Warfarin used for treatment of 

 Thromboembolic disorders. 

 

 

 

 

2.2. Methodology 

Our goal is to predict CVD mortality through the 

development of a predictive model. For this purpose, we use 

various parameters from different categories, as listed in 

Table 1, treating them as features for ML algorithms to 

predict mortality [2, 4-9, 13]. Additionally, we analyze their 

impact on CVD mortality. 

In this study, we use the mutual information technique 

with 5-fold stratified cross-validation to determine the 

importance of each parameter. Mutual information measures 

the amount of information each feature provides about the 

target label, helping to identify which features are most 

relevant for predicting mortality [14, 15]. After identifying 

the most important features through mutual information (2, 

4, 6, 8, 10 features), we applied various ML techniques listed 

in Table 2 (including KNN, LR, SVM, RF, ETC, and SGD) 

to predict CVD mortality. We used Grid Search to identify 

the best hyper-parameters for the ML techniques. Grid 

Search systematically explores different combinations of 

hyper-parameters and uses cross-validation to determine 

which set of values provides the best performance for the 

model [16]. 

 

Table 2 

Description of ML techniques 

Method Description 

KNN K-Nearest Neighbors (KNN) is an instance-based algorithm that classifies a point based on the majority class of its k nearest 

neighbors using distance metrics [17]. 

LR Logistic Regression (LR) is a statistical method for predicting binary outcomes by fitting a logistic curve using independent 

variables [18].  

SVM Support Vector Machine (SVM) is a supervised algorithm that identifies the optimal hyperplane to separate classes while 

maximizing the margin between them [19].  

RF Random Forest (RF) is an ensemble technique that builds multiple decision trees and combines their predictions to improve 

accuracy and reduce overfitting [20]. 

ETC Similar to RF, Extra Trees Classifier (ETC) introduces more randomness in tree splitting, enhancing diversity and performance 

[21]. 

SGD Stochastic Gradient Descent (SGD) is an optimization algorithm that incrementally updates model parameters based on the 

gradient of the loss function from a data subset [22]. 

 

3. Results 

Table 3 lists the 57 parameters used to assess their impact 

on predicting CVD mortality. Figure 1 shows the feature 

importance rankings obtained using the mutual information 

technique. Figure 2 illustrates the performance of various 

ML techniques in predicting CVD mortality. The accuracy 

varies between 70% and 79% depending on the number of 

input features, while the F1-score ranges from 68% to 80%. 

Table 4 compares the results of the ML algorithms to 

identify the best-performing technique. The comparison 

indicates that the KNN algorithm outperforms others when 

using the two most important features, age and forced 
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expiratory volume. Figure 3 presents the Receiver Operating 

Characteristic (ROC) curve, and Figure 4 displays the 

confusion matrix, both plotted for the KNN algorithm, which 

demonstrates the best performance. 

 

Table 3 

Description of parameters 

Parameters Alive (256 subject) Dead (256 subject) 

Age; (Mean ± SE) 64.84  ±  0.64 76.24  ±  0.46 

SEX; (Male or Female) Female; 139 
(54.30%), Male; 
117(45.70%) 

Female; 
116(45.31%), Male; 
140 (54.69%) 

Race; (White, Black or 
Other) 

White; 233 
(91.01%), Black; 
12 (4.69%), Others; 
11 (4.30%) 

White; 226 
(88.28%), Black; 29 
(11.33%), Others; 1 
(0.39%) 

Ethnicity; (Hispanic or 
Latino) 

Hispanic; 246 
(96.09%), Latino; 
10 (3.91%) 

Hispanic; 255 
(99.61%), Latino; 1 
(0.39%) 

BMI; (Mean ± SE) (in 
kilograms per square 
meter) 

28.36  ±  0.28 27.50  ± 0.30 

Hip circumference; 
(Mean ± SE) (in 
centimeters) 

105.61  ±  0.58 103.33  ±  0.66 

Neck circumference; 
(Mean ± SE) (in 
centimeters) 

37.75  ±  0.25 38.12  ±  0.23 

Waist circumference; 
(Mean ± SE) (in 
centimeters) 

98.27  ±  0.84 98.52  ±  0.81 

Cholesterol; (Mean ± 
SE) (in milligrams per 
deciliter) 

207.70  ±  2.26 206.89  ±  2.57 

HDL; (Mean ± SE) (in 
milligrams per deciliter) 

51.26  ±  1.03 50.28  ±  0.91 

Triglycerides; (Mean ± 
SE) (in milligrams per 
deciliter) 

153.26  ±  6.64 159.61  ±  6.34 

Systolic BP; (Mean ± 
SE) (in millimeters of 
mercury) 

123.74  ±  1.10 132.69  ±  1.34 

Diastolic BP; (Mean ± 
SE) (in millimeters of 
mercury) 

71.27  ±  0.65 66.99  ±  0.75 

FEV1; (Mean ± SE) (in 
Liters) 

2.71  ±  0.05 2.10  ±  0.04 

FVC; (Mean ± SE) (in 
Liters) 

3.63  ±  0.06 2.80  ±  0.06 

Alcohol; (drinks per day) 
(yes or no) 

Yes; 112 (43.75%) Yes; 66 (25.78%) 

Cigarette pack-years; 
(Mean ± SE) 

13.84  ±  1.35 16.40  ±  1.42 

Heavy smoker; (yes or 
no) 

Yes; 148 (57.81%) Yes; 141 (55.08%) 

History of sleep apnea; 
(yes or no) 

Yes; 2 (0.78%) Yes; 1 (0.39%) 

Hypertension; (yes or 
no) 

Yes; 102 (39.84%) Yes; 187 (73.05%) 

Diabetes; (yes or no) Yes; 16 (6.25%) Yes; 56 (21.87%) 

Stroke; (yes or no) Yes; 4 (1.56%) Yes; 23 (8.98%) 

CHD; (yes or no) Yes; 3 (1.17%) Yes; 34 (13.28%) 

CVD; (yes or no) Yes; 27 (10.55%) Yes; 83 (32.42%) 

Sleep efficiency; (Mean 
± SE) 

85.05  ±  0.58 77.93  ±  0.77 

WASO; (Mean ± SE) (in 
minutes) 

55.02  ±  2.53 83.17  ±  3.23 

Sleep time; (Mean ± SE) 
(in minutes) 

604.18  ±  5.97 569.84  ±  7.17 

Time in bed; (Mean ± 
SE) (in minutes) 

438.00  ±  3.35 441.44  ±  3.66 

Sleep latency; (Mean ± 
SE) (in minutes) 

11.22  ±  1.15 13.83  ±  1.12 

Oahi; (OAHI at >=4%) 
(Mean ± SE) 

10.69  ±  0.83 11.56 ±  0.86 

ALPHA1; (yes or no) Yes; 14 (5.47%) Yes; 15 (5.86%) 

ANAR1A1; (yes or no) Yes; 2 (0.78%) Yes; 4 (1.56%) 

ANAR31; (yes or no) Yes; 1 (0.39%) Yes; 1 (0.39%) 

Aspirin; (yes or no) Yes; 82 (32.03%) Yes; 119 (46.48%) 

CCB1; (yes or no) Yes; 32 (12.50%) Yes; 63 (24.61%) 

CCBIR1; (yes or no) Yes; 5 (1.95%) Yes; 14 (5.47%) 

CCBSR1; (yes or no) Yes; 27 (10.55%) Yes; 50 (19.53%) 

DIG1; (yes or no) Yes; 4 (1.56%) Yes; 42 (16.40%) 

DIURET1; (yes or no) Yes; 50 (19.53%) Yes; 88 (34.37%) 

ESTRGN1; (yes or no) Yes; 48 (18.75%) Yes; 23 (8.98%) 

HCTZ1 Yes; 25 (9.76%) Yes; 25 (9.76%) 

HCTZK1 Yes; 13 (5.08%) Yes; 17 (6.64%) 

Insulins Yes; 6 (2.34%) Yes; 10 (3.91%) 

ISTRD1 Yes; 4 (1.56%) Yes; 5 (1.95%) 

LIPID1 Yes; 44 (17.19%) Yes; 33 (12.89%) 

LOOP1; (yes or no) Yes; 11 (4.30%) Yes; 49 (19.14%) 

NIAC1; (yes or no) Yes; 5 (1.95%) Yes; 4 (1.56%) 

NSAID1; (yes or no) Yes; 57 (22.26%) Yes; 41 (16.01%) 

NTCA1 Yes; 9 (3.51%) Yes; 13 (5.08%) 

Nitrates Yes; 7 (2.73%) Yes; 31 (12.11%) 

PDEI1 Yes; 5 (1.95%) Yes; 9 (3.51%) 

Premarin; (yes or no) Yes; 37 (14.45%) Yes; 20 (7.81%) 

Progestins; (yes or no) Yes; 24 (9.37%) Yes; 8 (3.12%) 

SYMPTH1; (yes or no) Yes; 7 (2.73%) Yes; 11 (4.30%) 

TCA1 Yes; 7 (2.73%) Yes; 6 (2.34%) 

Thyroid agents Yes; 25 (9.76%) Yes; 25 (9.76%) 

Warfarin; (yes or no) Yes; 2 (0.78%) Yes; 24 (9.37%) 

Alive refers to individuals who were alive throughout the SHHS dataset 

collection period. Dead refers to individuals who died from CVD. SE refers 

to standard error. 
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Figure 1  

Feature Importance Using the Mutual Information technique 

 

 

Figure 2 

Performance of ML Algorithms in predicting CVD mortality 

Table 4 

Comparison of ML algorithms’ results 

𝐶0 refers to class 0. 𝐶1 refers to class 1. Acc refers to accuracy. AUC refers to the area under the receiver operating curve. n refers to number of features used 

for training the ML algorithms. 

 

ML 

Precision (%) Recall (%) F1-Score (%) Performance (%) n 

C0 C1 C0 C1 C0 C1 Acc AUC n 

LR 79 74 71 81 74 77 76 82 2 

KNN 77 77 76.56 77.34 76 77 77 79 2 

RF 77 75 74 79 75 77 76 81 2 

SVM 80 72 68 83 73 77 75 80 2 
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Figure 3 

ROC Curve of KNN method for predicting CVD mortality 

 

 

  
Figure 4 

Confusion Matrix of KNN for CVD mortality prediction 

4. Discussion 

Given that CVD mortality is the leading cause of death 

globally, effective monitoring of CVD patients is critical. To 

facilitate proper monitoring, it is essential to first identify the 

key factors contributing to CVD mortality.  

Using ML techniques, we predict CVD mortality over a 

10 to 15-year period to determine these influential factors. 

We train various ML algorithms, including LR, SVM, KNN, 

RF, SGD, and ETC, using different sets of 2, 4, 6, 8, and 10 

most significant features through mutual information. To 

ensure accuracy, we employ 10-fold cross-validation.  

The performance of these algorithms, based on F1-score 

for different numbers of input features, is depicted in Figure 

2. Our analysis reveals that LR, RF, KNN, and SVM 

produced relatively similar results across varying feature 

counts. Notably, all algorithms perform comparably well 

with the top 10 features (age, FEV1, FVC, sleep efficiency, 

WASO, hypertension, CVD history, digitalis use, systolic 

blood pressure, triglycerides).  
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Given the similarity in overall performance, we focus on 

the minimal number of features that yield comparable results 

to the best-performing algorithms. As shown in Figure 2, 

using the top 2 features results in an F1-score of 77%, which 

slightly increases to 80% with 10 features. Therefore, we 

compare the algorithms using just the top 2 features in Table 

4. The results indicate that the KNN algorithm outperforms 

the others, achieving an F1-score of 77%, an accuracy of 

77%, an AUC of 79%, a sensitivity of 77.34%, and a 

specificity of 76.56% with age and forced expiratory volume 

as inputs. The optimal value of k, determined via grid search 

for KNN with these two features, is 8.  

In this study, we encounter several limitations, including 

a significant number of missing values across various 

parameters, an average participant age above 64 years, and 

highly imbalanced labels. Future research should focus on 

analyzing data from younger populations with fewer missing 

values to achieve a more comprehensive and broader 

prediction across a larger population. 

Despite these limitations, our study provides a 

comprehensive examination of various factors influencing 

long-term CVD mortality over a period of ten to fifteen 

years. We thoroughly analyze different parameters to predict 

mortality across individuals of varying ages. Importantly, we 

identify the key factors contributing to early CVD mortality 

and determine the most effective ML technique for 

prediction.  

Timely and intelligent prediction of CVD mortality and 

the identification of influencing parameters are crucial for 

preventing premature deaths in populations. Such 

predictions allow individuals to consider lifestyle changes 

towards healthier living and enable physicians to focus on 

reducing the impact of or monitoring the key parameters 

affecting CVD mortality. 

5. Conclusion  

This study develops an intelligent approach for predicting 

CVD mortality over a 10 to 15-year period. Various ML 

techniques are employed to investigate the relationship 

between multiple parameters and mortality prediction. A 

relatively large number of parameters from different 

categories are examined, and their importance is determined 

using mutual information. These parameters are then used as 

inputs for ML models. Model robustness is ensured through 

k-fold cross-validation (with k = 10), and grid search is 

employed for hyper-parameter optimization.  

Among the tested algorithms, KNN demonstrates the best 

performance across different numbers of important 

parameters, particularly with the key features of age and 

forced expiratory volume, achieving an optimal k = 8. KNN 

achieves an accuracy of 77%, an F1-score of 77%, an AUC 

of 79%, a sensitivity of 77.34%, and a specificity of 76.56%.  

As mentioned earlier, the primary goal is to identify the 

influential parameters in predicting CVD mortality. By 

closely monitoring these key parameters, healthcare 

providers can better manage CVD patients, improve their 

health conditions, and ultimately contribute to extending 

their lifespan and enhancing their quality of life. 
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