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In this paper, we present an enhanced U-Net-based model for effective image 
denoising, incorporating a hybrid attention mechanism that combines both spatial 
and channel attention. These dual attention blocks enable the network to 
dynamically focus on relevant features while suppressing noise across both 
dimensions, thereby improving denoising performance. To further refine the output 
and enhance perceptual quality, a Gaussian filter is applied as a post-processing 
step, resulting in smoother edges and better texture continuity. The model also 
leverages Batch Normalization and Dropout techniques to stabilize training and 
prevent overfitting. Experimental evaluations were conducted on the CIFAR-10 and 
DIV2K datasets using standard performance metrics. The proposed model achieved 
an accuracy of 82%, a loss of 0.01, a PSNR of 37 dB, and an SSIM of 0.94—
outperforming several state-of-the-art denoising methods. These results confirm the 
model’s strong ability to preserve structural and textural image details while 
significantly reducing noise. The combination of convolutional deep learning, 
hybrid attention mechanisms, and post-processing filtering offers a powerful and 
scalable solution for image restoration tasks. Furthermore, it demonstrates strong 
potential for practical applications in real-world scenarios such as image quality 
enhancement and medical imaging. 
Keywords: U-Net; attention mechanism; Gaussian filter; image denoising; 
Convolutional Neural Networks 

  

1. Introduction 

mage denoising is a fundamental and longstanding 

problem in computer vision and image processing. The 

presence of noise—originating from acquisition sensors, 

transmission errors, or environmental conditions—can 

significantly degrade image quality and hinder both human 

interpretation and automated analysis. Common types of 

noise include Gaussian, salt-and-pepper, and speckle noise, 

each of which poses unique challenges to effective 

restoration [1, 2]. 

 With the advent of deep learning, convolutional neural 

networks (CNNs) have demonstrated remarkable success in 

various low-level vision tasks, including denoising [3, 4]. 

Among these, the U-Net architecture has become 

particularly prominent due to its encoder-decoder structure 

with skip connections, which enables efficient learning of 

both global context and fine-grained spatial details [5]. 

 Despite its effectiveness, the original U-Net struggles to 

distinguish between relevant features and noise, 

particularly when dealing with complex or subtle noise 

patterns. To address this limitation, recent research has 

incorporated attention mechanisms into U-Net, allowing 
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the model to prioritize salient features during 

reconstruction [6, 7]. However, most of these approaches 

use a single attention type (either spatial or channel-wise), 

which may restrict the model’s capacity to capture multi-

dimensional feature relevance [8]. 

In this paper, we propose a modified U-Net architecture 

augmented with a hybrid attention mechanism, which 

integrates both channel attention and spatial attention in 

parallel. This dual-attention design enables the network to 

adaptively focus on important features across both 

dimensions, enhancing its ability to suppress diverse noise 

types. Furthermore, we apply a Gaussian filter as a 

lightweight post-processing step to further improve the 

smoothness of the output images. 

Figure 1 illustrates examples of common image noise 

types such as Gaussian, salt-and-pepper, and speckle noise, 

which are frequently encountered in real-world scenarios. 

 Experimental results on two benchmark datasets, 

CIFAR-10 and DIV2K, confirm the superiority of the 

proposed model in terms of Peak Signal-to-Noise Ratio 

(PSNR), Structural Similarity Index (SSIM), and visual 

quality. Our contributions can be summarized as follows: 

 We design a novel U-Net architecture enhanced 

with a dual-attention mechanism for more 

effective feature refinement. 

 We evaluate the model on diverse image datasets 

and noise levels, showing consistent 

improvements over state-of-the-art baselines. 

 We demonstrate that combining attention 

mechanisms with a post-processing Gaussian filter 

leads to improved perceptual quality in denoised 

images. 

 

 

Figure 1. Salt-and-pepper noise (right) and Gaussian noise (left) 

2. Review of Previous Research 

Numerous techniques have been developed to address 

image denoising, ranging from traditional filtering methods 

to modern deep learning approaches. Early techniques such 

as mean filtering, median filtering, and Gaussian smoothing 

were widely adopted due to their simplicity and 

computational efficiency [9]. However, these methods 

often fail to preserve fine structural details and tend to 

oversmooth images, especially when dealing with complex 

or non-linear noise patterns [10]. 

 The advent of deep learning has revolutionized image 

restoration tasks. In particular, convolutional neural 

networks (CNNs) have demonstrated outstanding 

performance in denoising due to their ability to learn 

hierarchical features from large datasets [11]. Among these, 

the U-Net architecture, initially proposed for biomedical 

image segmentation [12], has gained widespread popularity 

in low-level vision tasks. Its symmetric encoder-decoder 

design with skip connections facilitates effective feature 

extraction and spatial detail reconstruction, making it 

particularly suitable for noise removal [13]. 

Recent advancements have incorporated attention 

mechanisms into U-Net to enhance its ability to focus on 

relevant regions and suppress noisy features. For instance, 

Woo et al. introduced the Convolutional Block Attention 

Module (CBAM), which combines spatial and channel 

attention in a sequential manner [14]. Similarly, Qin et al. 

proposed the Residual Attention U-Net, which improved 

denoising performance on medical images through spatial 

awareness [15]. While these approaches have shown 

improvements, they often employ only a single type of 

attention, which may limit the model’s representational 

power. 

In contrast, our proposed model introduces a hybrid 

attention mechanism that integrates both spatial and 

channel attention blocks in parallel. This enables the model 

to simultaneously capture spatial significance and inter-

channel dependencies, resulting in more effective noise 

suppression across varying noise types and datasets. 

Furthermore, while most prior works rely solely on end-

to-end learning for denoising, we enhance the output with a 

Gaussian post-processing filter, a classical but powerful 

tool that smooths residual noise and refines structural 

continuity. This two-stage strategy of combining deep 

attention with signal-domain refinement has not been 

comprehensively addressed in existing literature. 

Overall, our work builds upon and extends these 

contributions by combining multi-dimensional attention 

with post-processing, offering a more robust and 

generalizable solution for image denoising. 
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3. Materials and Methods 

This section describes in detail the datasets used in our 

experiments, the procedures followed to simulate noisy 

environments, the architectural design of the proposed 

model, and the metrics employed to assess performance. 

Each component of the methodology has been carefully 

selected and designed to ensure a comprehensive 

evaluation of the proposed denoising framework across 

multiple image domains and resolutions. 

3.1. Data 

To evaluate the generalizability and robustness of the 

proposed model, we used two benchmark datasets with 

distinct characteristics: CIFAR-10 and DIV2K. Each 

dataset provides unique challenges for the denoising task 

and enables validation across low-resolution and high-

resolution scenarios. 

CIFAR-10 is a widely used dataset in the computer 

vision community. It consists of 60,000 color images of 

size 32×32 pixels, divided into 10 mutually exclusive 

classes including airplanes, cars, birds, cats, deer, dogs, 

frogs, horses, ships, and trucks. Out of the total, 50,000 

images are designated for training and 10,000 for testing. 

Despite its relatively small resolution, CIFAR-10 presents 

significant challenges due to its high intra-class variability, 

diverse backgrounds, and real-world noise-like textures. 

This makes it an ideal candidate for testing the 

effectiveness of denoising models under constrained spatial 

resolution and high visual diversity. 

Figure 2 presents sample images from the CIFAR-10 

dataset under clean and noise-degraded conditions [32]. 

 

 

Figure 2. Samples from the first dataset 

On the other hand, DIV2K (DIVerse 2K resolution 

dataset) is designed specifically for image enhancement 

tasks such as super-resolution. It comprises 2,000 high-

quality images with resolutions up to 2K (2040×1080 and 

higher). The dataset includes a wide range of scenes, from 

indoor environments and natural landscapes to crowded 

urban streets and objects with intricate textures. This 

diversity in both content and resolution allows our model to 

be tested in challenging high-detail scenarios where minor 

artifacts and residual noise become more visually 

prominent. Using DIV2K helps evaluate how well our 

model preserves high-frequency details while removing 

noise in large-scale images [34]. 

Figure 3 presents sample images from the DIV2K 

dataset under clean and noise-degraded conditions. 

 

 

Figure 3. Samples from the second dataset 

All sample images from CIFAR-10 and DIV2K shown 

in Figures X and Y were generated directly via code 

execution on Google Colab. The datasets were downloaded 

using standard public sources, and the displayed samples 

were randomly selected from the loaded datasets. No 

external images or manually curated samples were used. 

This ensures reproducibility and confirms that the samples 

accurately represent the original datasets. 

3.2. Proposed Method 

Noise Injection Procedure: In real-world imaging 

systems, noise is an inevitable byproduct of environmental 

factors, hardware limitations, and transmission errors. To 

replicate such realistic conditions and rigorously train our 

model, we applied additive Gaussian noise to the clean 

images in both datasets. Specifically, we introduced zero-

mean Gaussian noise with a standard deviation of σ = 0.2, a 

commonly used noise level in image restoration research, 

which strikes a balance between moderate degradation and 

preservation of underlying structure. 

This noise was added directly to the pixel values of the 

images, after which the resulting noisy images were clipped 

to remain within the valid dynamic range of [0, 1]. These 

noisy images were then used as inputs to the denoising 

network, while the corresponding clean images served as 

ground truth targets during supervised training. This 

approach simulates realistic sensor noise and enables the 
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model to learn effective feature representations that are 

robust to common distortions. 

Furthermore, we applied the same noise generation 

strategy across both training and testing sets to maintain 

consistency and allow for fair evaluation. The use of 

synthetic noise, despite being artificial, allows precise 

control over noise parameters and facilitates reproducibility 

of results—a crucial aspect in academic 

research.Pseudocode(1) : 

def add_noise(images): 

noise_factor = 0.2 

noisy_images = images + noise_factor 

* np.random.normal(loc=0.0, scale=0.2, 

size=images.shape) 

noisy_images = np.clip(noisy_images, 

0., 1.) 

return noisy_images 

 

 

 

(1) 

 

 

Proposed Architecture with Hybrid Attention 

Mechanism: The core of our methodology is a customized 

U-Net architecture augmented with a hybrid attention 

mechanism that integrates both channel attention (CA) and 

spatial attention (SA) modules. U-Net has been widely 

adopted for its efficient encoder-decoder structure with skip 

connections, which enables effective feature extraction and 

detail-preserving reconstruction. 

However, in its vanilla form, U-Net lacks mechanisms 

to differentiate important features from noise, especially in 

cluttered or low-contrast regions. 

To overcome this limitation, we enhance each decoder 

stage of the U-Net with dual attention modules: 

- The Channel Attention Module focuses on inter-

channel dependencies. It aggregates spatial information 

through global average pooling, then applies a fully 

connected layer followed by a non-linear activation to 

generate channel-wise weights. These weights emphasize 

more informative channels while suppressing redundant or 

noisy features 

- The Spatial Attention Module, in contrast, captures 

where in the image the most salient information lies. It 

computes a spatial attention map using convolutional 

operations over the concatenated feature maps from 

encoder and decoder paths. This map is used to reweight 

spatial regions, directing the model’s focus to relevant pixel 

locations. 

By integrating these two attention mechanisms, the 

model dynamically refines feature maps across both 

dimensions—what features are important and where they 

are located. This hybrid mechanism improves the model's 

capacity to reconstruct fine details, suppress background 

noise, and maintain the structural integrity of the original 

image. 

The encoder part of the model consists of convolutional 

blocks with kernel size 3×3, ReLU activation, batch 

normalization, and max pooling layers for downsampling. 

The decoder employs transposed convolutions for 

upsampling, with skip connections from the corresponding 

encoder layers to retain spatial coherence. A final sigmoid 

activation scales the output to the [0,1] range, making it 

suitable for grayscale or normalized RGB images. 

Examining the Pseudocode(2): 

function encoder_block(input, 

num_filters): 

output = convolution(input, 

num_filters, kernel_size, stride) 

output = activation_function(output)  

# e.g., ReLU 

output = normalization(output) 

output = max_pooling(output, 

pool_size) 

return output, pooled_output 

 

 

 

 

(2) 

 

Each convolutional block includes two 3×3 

convolutional layers, followed by Batch Normalization, 

ReLU activation, and Dropout (rate = 0.3) for 

regularization. These blocks serve as the building units in 

both encoder and decoder. 

Why Use Convolutional Blocks? 

Local Feature Extraction: Convolutional filters, as they 

traverse the image, identify local features such as edges, 

corners, and textures. 

Preserving Spatial Relationships: Convolutions maintain 

spatial relationships between pixels, which is crucial for 

object and pattern recognition. 

Reducing Parameters: Weight sharing among filters 

decreases the number of trainable parameters, mitigating 

the risk of overfitting. 

Typical Structure of a Convolutional Block: 

 Convolutional Layers: Filters are applied to the 

input image, generating feature maps. 

 Activation Function: A function like ReLU 

introduces non-linearity to the output of the 

convolutional layer. 
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 Normalization: Techniques like Batch 

Normalization stabilize training and improve 

network performance. 

 Downsampling Layer (Optional): Layers like 

MaxPooling reduce dimensionality and extract 

more significant features. 

Pseudocode for a Convolutional Block(3): 

def conv_block(x, filters): 

    x = Conv2D(filters, 

kernel_size=3, padding='same')(x) 

    x = BatchNormalization()(x) 

    x = ReLU()(x) 

    x = Dropout(0.3)(x) 

    x = Conv2D(filters, 

kernel_size=3, padding='same')(x) 

    x = BatchNormalization()(x) 

return x 

 

 

    

(3)  

 

 A decoder block plays a crucial role in deep neural 

networks—particularly within generative models and 

autoencoders—by reconstructing detailed information from 

a compressed representation. It transforms a lower-

dimensional input, typically a vector, into a higher-

dimensional output, such as a reconstructed image. 

How a Decoder Block Works: 

  Receives Compressed Input The decoder accepts a 

low-dimensional vector as input, which contains features 

extracted by preceding layers of the network (e.g., the 

encoder). 

  Progressive Dimensional Expansion Through the 

use of transpose convolution and convolutional layers, the 

decoder gradually expands the dimensionality of the output, 

refining spatial details with each layer. 

  Skip Connections for Detail Retention To maintain 

spatial and structural information, the output of each 

decoder layer is commonly concatenated with 

corresponding encoder-layer outputs via skip connections. 

These help preserve fine-grained information throughout 

the reconstruction process. 

Importance of Decoder Blocks: 

  High-Quality Image Generation Decoder blocks 

are vital in generating realistic and visually coherent 

outputs in generative models, such as GANs or VAEs. 

  Restoration of Missing Data In autoencoders, 

decoders aim to recover information potentially lost during 

the compression stage. 

  Insight into Latent Representations By examining 

the decoder’s output, researchers can gain valuable insights 

into how data is structured and represented within the latent 

space.Pseudocode(4) for a Decoder Block: 

def decoder_block(inputs, 

skip_features, filters): 

x = layers.Conv2DTranspose(filters, (2, 

2), strides=(2, 2), padding='same')(inputs) 

x = layers.concatenate([x, 

skip_features]) 

x = conv_block(x, filters) 

return x 

 

 

(4) 

 

 

Gaussian Filter for Post-processing: While deep learning 

models can learn powerful denoising mappings, in practice, 

they may still leave behind small residual artifacts or noise. 

To further enhance the perceptual quality of output images, 

we incorporate a Gaussian filter as a lightweight post-

processing step after the final decoder layer. 

The Gaussian filter applies a localized smoothing 

operation based on a Gaussian kernel, which reduces high-

frequency fluctuations while preserving the global structure 

of the image. This operation helps mitigate edge ringing, 

checkerboard artifacts, and minor speckles that may persist 

after neural network inference. The kernel size and 

standard deviation of the filter were empirically selected to 

balance noise suppression and edge preservation. 

This hybrid approach—combining learnable attention 

modules with classical filtering—offers the best of both 

worlds: deep semantic learning and traditional signal 

smoothing. 

Pseudocode for Applying Gaussian Filter (5): 

import cv2 

def apply_gaussian_filter(image, 

kernel_size=5, sigma=1.0): 

return cv2.GaussianBlur(image, 

(kernel_size, kernel_size), sigma) 

output_image = ...  # Model output 

filtered_output = 

apply_gaussian_filter(output_image) 

 

 

 

(

5) 

 

The overall pipeline of the proposed denoising 

framework is illustrated in Figure 4. It outlines the key 

stages, including dataset preparation, noise injection, 

hybrid attention-based U-Net processing, Gaussian post-

filtering, and performance evaluation. This step-by-step 

diagram helps visualize the full procedure from input to 
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evaluation and highlights the integration of both deep 

learning and classical techniques. 

 

Figure 4. The proposed method 

Figure 4 Workflow of the proposed image denoising 

model. The process starts with dataset loading and 

Gaussian noise injection, followed by inference using a 

hybrid attention-enhanced U-Net architecture. The output is 

then refined using a Gaussian filter, and performance is 

evaluated using PSNR, SSIM, and accuracy metrics. The 

proposed model introduces several architectural and 

functional innovations compared to conventional U-Net 

and Attention U-Net variants [14]. First, our network 

incorporates a deeper convolutional structure with an 

increased number of layers and optimized hyperparameter 

settings, allowing it to extract more complex and high-level 

features from noisy images.Furthermore, we integrate 

advanced training strategies such as batch normalization, 

data augmentation, and dropout, which collectively 

improve generalization and reduce overfitting. Batch 

normalization, in particular, stabilizes and accelerates the 

learning process by normalizing the input to each layer. 

While previous works such as the Attention U-Net [15] 

were tailored for specific applications—e.g., medical image 

segmentation—our architecture is designed as a general-

purpose denoising framework, applicable across diverse 

datasets and noise types. 

 A key innovation of our model is the incorporation of a 

hybrid attention mechanism that simultaneously integrates 

channel attention (CA) and spatial attention (SA) modules 

in parallel. Unlike most existing models that apply only one 

type of attention, this design enables the network to 

emphasize both what features are important (via CA) and 

where they are located (via SA), resulting in more effective 

noise suppression and structure preservation. 

 To enhance robustness under real-world conditions, we 

introduce Gaussian noise (σ = 0.2) during training, 

simulating practical sensor imperfections and increasing 

dataset variability. This strategy allows the network to 

better generalize to unseen noisy environments. 

Unlike segmentation-based models which output 

probabilistic heatmaps, our model produces continuous-

valued pixel predictions in the range of [0, 1], using a 

sigmoid activation function at the final layer. This output 

format is more appropriate for denoising tasks where 

precise reconstruction of pixel intensities is required. 

The baseline U-Net architecture, depicted in Figure 5, 

consists of an encoder (downsampling) and decoder 

(upsampling) pathway with skip connections, which help 

retain spatial information during reconstruction. This 

structure effectively captures both global context and local 

details. 

 As illustrated in Figure 6, The hybrid attention 

mechanism used in our model is illustrated in Figure 7, 

where both channel and spatial attention modules are 

applied in parallel, allowing the network to capture inter-

channel dependencies as well as spatial importance 

simultaneously. 

 

Figure 5. U-Net Architecture [16] 
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Figure 6. Proposed architecture 

 

Figure 7. Attention Block Architecture 

Figure 7 Hybrid attention block integrated into the 

decoder stages of the proposed U-Net architecture. Channel 

attention (CA) and spatial attention (SA) are computed in 

parallel and fused through element-wise multiplication. A 

residual connection from the input feature map enhances 

gradient flow and feature refinement. 

3.3. Evaluation Metrics 

In this section, we provide a summary of two well-

known metrics used to evaluate the performance of 

denoising methods. While most existing works rely on 

quantitative metrics for comparisons, the visual quality of 

denoised images is also crucial, as humans are often the 

end consumers of these images. 

Peak Signal-to-Noise Ratio (PSNR): PSNR, measured in 

decibels (dB), is the most widely used criterion to quantify 

degradation resulting from losses in image transformations 

(e.g., compression, transmission, or reconstruction). Due to 

its low complexity and ease of use, it is commonly 

employed for comparisons. Given two images X = {xi ϵ R} 

n
i=1 and Y = {yi ϵ R}n

i=1, PSNR is calculated according to 

Formula (1) : 

 

(1) 
PSNR = 10loge10(MAX_x^2/MSE) 

MSE = 1/n∑i=1
n(yi –yi

’)^2 
where MAX_x is the maximum value in the dynamic 

range of the images. In the context of image reconstruction, 

higher PSNR values typically indicate better quality. 

However, in some cases, PSNR may not effectively 

correlate with perceived quality as assessed by human 

observers. 

Structural Similarity (SSIM): Structural similarity 

(SSIM) is proposed as a more sophisticated image quality 

assessment metric that aligns better with human perception 

of visual quality. SSIM measures the visual impact of 

changes in image luminance, contrast, spatial 

dependencies, and overall structural information in the 

viewing field. Given two images X = {xi ϵ R} n
i=1 and Y = 

{yi ϵ R}n
i=1, SSIM is computed according to Formula (2): 

(

2) 
SSIM = [LX,Y]^a [CX,Y]^b [SX,Y]^c 

where  a > 0, b > 0, c > 0  control the relative 

significance of each term. The luminance, contrast, and 

structural components are defined according to Formulas 

(3), (4), and (5): 

(3) LX,Y = 2μxμy + ꞓ1 μx
^2 + μy

^2 + ꞓ1 

(4) CX,Y = 2σxy + ꞓ2/ σx
^2 + σy

2 + ꞓ2 

(5) SX,Y = σxy +ꞓ3/ σx
 + σy + ꞓ3 

where μx and μy denote the means, σx and σy denote the 

standard deviations, and σxy  denotes the correlation 

between X  and Y Additionally, ꞓ1, ꞓ2, and ꞓ3 are constants 

introduced to prevent instability when the denominators 

approach zero [17]. 

4. Results and Analysis 

This section presents a comprehensive evaluation of the 

proposed hybrid-attention U-Net model, combining both 

quantitative metrics and qualitative visual comparisons. 

The model's performance was rigorously assessed on two 

benchmark datasets, CIFAR-10 and DIV2K, representing 

diverse image types and resolutions. Our goal is not only to 

measure denoising accuracy but also to assess the model's 

capability in preserving structural details and suppressing 

different forms of noise effectively. 

4.1. Quantitative Results 

To evaluate the denoising performance numerically, we 

employed four standard evaluation metrics: Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM), 

pixel-wise accuracy, and loss (Mean Squared Error). Table 

1 summarizes the comparison between our proposed model 

and several recent state-of-the-art methods, including those 

proposed by Chen et al. (2022), Li et al. (2023), and others 

[11, 12]. 

The results show that our model consistently 

outperforms the competing methods across all four metrics. 
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Specifically, our model achieved an average PSNR of 37 

dB, which reflects a significant improvement in fidelity 

compared to previous models (e.g., 36.5 dB in [11, 12]). In 

addition, the SSIM score of 0.94 indicates excellent 

structural preservation, especially in high-frequency 

regions such as edges and fine textures. The accuracy of 

82% and low loss value of 0.01 further confirm the 

robustness of the network in learning reliable mappings 

from noisy to clean image domains. 

The improvements are attributed to the hybrid attention 

blocks, which allow the model to dynamically emphasize 

relevant features at both the spatial and channel levels, 

reducing the influence of irrelevant noise while maintaining 

important structural content. The inclusion of the Gaussian 

filter also plays a role in smoothing residual noise and 

enhancing final output quality. 

4.2. Training Stability and Convergence 

Figures 8 and 9 illustrate the training and validation 

curves for accuracy and loss, respectively, across multiple 

epochs. The accuracy curve shows a steady and monotonic 

increase over time, suggesting that the model is effectively 

learning meaningful patterns in the noisy input images. 

Simultaneously, the loss curve exhibits a consistent decline, 

eventually stabilizing at a low value of 0.01, indicating that 

the model reaches convergence without oscillations or 

overfitting. 

Notably, the gap between the training and validation 

curves remains minimal throughout the process. This 

narrow gap reflects the model's generalization capability 

and suggests that it performs well on unseen test data. The 

use of dropout and batch normalization layers likely 

contributed to this stability by preventing overfitting and 

encouraging better feature learning. 

These findings highlight the importance of a well-

designed training protocol, including appropriate noise 

levels, sufficient data augmentation, and careful 

architectural tuning. The training process demonstrates that 

the hybrid-attention U-Net is both data-efficient and stable 

under supervised learning conditions. 

4.3. Qualitative Visual Analysis 

To complement the quantitative evaluation, we 

performed extensive visual comparisons on sample images 

from both CIFAR-10 and DIV2K datasets. Figures 10 and 

11 and 12 show denoised outputs produced by the proposed 

model. The images clearly demonstrate the model’s ability 

to suppress noise while preserving crucial visual details. 

In the CIFAR-10 samples, which contain complex low-

resolution images with intricate object boundaries, the 

model successfully reconstructs sharp edges, textures, and 

object shapes, even in regions heavily affected by noise. 

For instance, the model restores facial features of animals 

and outlines of vehicles without introducing artifacts or 

blurring. 

In the high-resolution DIV2K images, where detail 

preservation is particularly critical, the model maintains 

fine textures such as foliage patterns, brick walls, and 

textural gradients. The post-processing Gaussian filter 

contributes to smooth transitions in homogeneous regions, 

while the hybrid attention blocks ensure that edges and 

salient structures remain intact. 

Figure 17 provides a side-by-side comparison between 

our method and that of Huang et al. (2021) [13]. Visually, 

our model produces cleaner outputs with more natural 

texture continuity and fewer visual distortions. Areas that 

previously appeared blotchy or overly smooth in other 

models are handled more elegantly in our approach [13]. 

4.4. Comparative Model Evaluation 

To provide a comprehensive performance comparison, 

we benchmarked our model against five recent denoising 

methods using four criteria: accuracy, PSNR, SSIM, and 

loss. The comparison results are depicted in Figures 13 

through 16. 

- Figure 13 (Accuracy Comparison): Shows that our 

model consistently achieves higher classification accuracy 

on restored images, indicating that denoising preserves 

semantically important content. 

- Figure 14 (SSIM Comparison): Highlights our model's 

ability to preserve structural similarity, outperforming 

existing models even in fine-detail regions. 

- Figure 15 (PSNR Comparison): Reinforces the 

superiority of our method in minimizing reconstruction 

error, especially in challenging conditions such as cluttered 

scenes and strong Gaussian noise. 

- Figure 16 (Loss Comparison): Confirms the efficiency 

of our training approach and architecture in reducing pixel-

level discrepancies with clean targets. 

To ensure fairness, all models were reimplemented or 

adapted based on their respective original descriptions, and 

evaluated under identical conditions—including noise 

levels, data splits, and preprocessing steps. This controlled 
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setting guarantees that the observed improvements stem 

from our architectural innovations, rather than experimental 

discrepancies. 

4.5. Discussion 

The combined attention modules and the inclusion of 

post-processing distinguish our approach from prior 

methods in several key aspects. The spatial-channel 

attention synergy empowers the model to better 

discriminate between signal and noise, leading to enhanced 

generalization across datasets. Moreover, the results 

indicate that attention alone is not sufficient; the 

lightweight Gaussian smoothing step at the output stage 

significantly improves perceptual quality without 

introducing additional computational burden. 

These outcomes underscore the importance of hybrid 

strategies in image restoration—strategies that integrate 

deep learning with traditional signal processing methods. 

Our findings suggest that further improvements may be 

possible by exploring learnable attention fusion 

mechanisms, noise-adaptive filtering techniques, or even 

integrating adversarial objectives for sharper image 

synthesis. 

Overall, the proposed model demonstrates competitive 

and often superior performance in quantitative, visual, and 

stability analyses. Its general applicability, low 

reconstruction error, and detail preservation capacity make 

it a strong candidate for real-world denoising applications 

across multiple domains. 

 

Figure 8. Accuracy of the Proposed Model 

 

 

Figure 9. Loss of the Proposed Model 

 

Figure 10. Denoising results with the CIFAR-10 dataset 

 

Figure 11. Denoising results with the DIV2K dataset 

 

Figure 12. Denoising results 
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Figure 13. Comparison of model accuracy [10-13, 15] 

 

Figure 14. Comparison of image similarity [10-13, 15] 

 

Figure 15. Comparison of image quality [10-13, 15] 

 

Figure 16. Comparison of model loss [10-13, 15] 

 

 

Figure 17. Sample Visual Comparison of Models. 

Table 1. Model comparison [10-13, 15]. 

Loss SSIM PSNR (%) Accuracy Model 

0.03 93 36 80 Model Reference [10] 

0.02 93.5 36.5 81 Model Reference [11] 

0.06 90 33.5 77 Model Reference [12] 

0.03 93 36 80 Model Reference [13] 

0.04 91 34 79 Model Reference [15] 

0.01 94 37 82 Our proposed Model 

5. Conclusion 

In this paper, we proposed a novel image denoising 

architecture based on the U-Net framework, augmented 

with a hybrid attention mechanism that integrates both 

channel attention and spatial attention modules. The dual 

attention design enables the model to dynamically focus on 

informative features across both spatial regions and feature 

channels, leading to enhanced denoising performance 

across a variety of image domains. 

To further refine the output quality, we introduced a 

Gaussian post-processing filter that effectively smooths 

residual noise while preserving structural details. The 

combination of learnable attention mechanisms and 

traditional filtering forms a synergistic denoising strategy 

that outperforms existing state-of-the-art models both 

quantitatively and visually. 

Experimental evaluations conducted on CIFAR-10 and 

DIV2K datasets demonstrated the superiority of our 

method in terms of PSNR, SSIM, accuracy, and visual 

fidelity. The proposed model achieved a PSNR of 37 dB, 

an SSIM of 0.94, and an accuracy of 82%, confirming its 

ability to suppress noise while maintaining image realism 

and detail integrity. 
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Moreover, the training process exhibited stable 

convergence and strong generalization, as reflected in the 

consistent performance across validation datasets. The 

inclusion of hybrid attention and post-processing filtering 

proved to be particularly effective in handling both low-

resolution and high-resolution images. 

In summary, the proposed model offers a robust, 

efficient, and generalizable solution for image denoising. 

Future research can explore further improvements by 

investigating adaptive attention weighting schemes, 

incorporating adversarial learning, or extending the 

framework to handle real-world noise with non-Gaussian 

characteristics. 
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