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In this paper, we present an enhanced U-Net-based model for effective image
denoising, incorporating a hybrid attention mechanism that combines both spatial
and channel attention. These dual attention blocks enable the network to
dynamically focus on relevant features while suppressing noise across both
dimensions, thereby improving denoising performance. To further refine the output
and enhance perceptual quality, a Gaussian filter is applied as a post-processing
step, resulting in smoother edges and better texture continuity. The model also
leverages Batch Normalization and Dropout techniques to stabilize training and
prevent overfitting. Experimental evaluations were conducted on the CIFAR-10 and
DIV2K datasets using standard performance metrics. The proposed model achieved
an accuracy of 82%, a loss of 0.01, a PSNR of 37 dB, and an SSIM of 0.94—
outperforming several state-of-the-art denoising methods. These results confirm the
model’s strong ability to preserve structural and textural image details while
significantly reducing noise. The combination of convolutional deep learning,
hybrid attention mechanisms, and post-processing filtering offers a powerful and
scalable solution for image restoration tasks. Furthermore, it demonstrates strong
potential for practical applications in real-world scenarios such as image quality
enhancement and medical imaging.

Keywords: U-Net; attention mechanism; Gaussian filter; image denoising;
Convolutional Neural Networks

1. Introduction

With the advent of deep learning, convolutional neural
networks (CNNs) have demonstrated remarkable success in

mage denoising is a fundamental and longstanding

problem in computer vision and image processing. The
presence of noise—originating from acquisition sensors,
transmission errors, or environmental conditions—can
significantly degrade image quality and hinder both human
interpretation and automated analysis. Common types of
noise include Gaussian, salt-and-pepper, and speckle noise,
each of which poses unique challenges to effective

restoration [1, 2].

various low-level vision tasks, including denoising [3, 4].
these, the U-Net
particularly prominent due to its encoder-decoder structure

Among architecture has become
with skip connections, which enables efficient learning of
both global context and fine-grained spatial details [5].
Despite its effectiveness, the original U-Net struggles to
distinguish  between relevant features and noise,
particularly when dealing with complex or subtle noise
patterns. To address this limitation, recent research has

incorporated attention mechanisms into U-Net, allowing
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the model to prioritize salient features during

reconstruction [6, 7]. However, most of these approaches

use a single attention type (either spatial or channel-wise),
which may restrict the model’s capacity to capture multi-

dimensional feature relevance [8].

In this paper, we propose a modified U-Net architecture
augmented with a hybrid attention mechanism, which
integrates both channel attention and spatial attention in
parallel. This dual-attention design enables the network to
adaptively focus on important features across both
dimensions, enhancing its ability to suppress diverse noise
types. Furthermore, we apply a Gaussian filter as a
lightweight post-processing step to further improve the
smoothness of the output images.

Figure 1 illustrates examples of common image noise
types such as Gaussian, salt-and-pepper, and speckle noise,
which are frequently encountered in real-world scenarios.

Experimental results on two benchmark datasets,
CIFAR-10 and DIV2K, confirm the superiority of the
proposed model in terms of Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and visual
quality. Our contributions can be summarized as follows:

%  We design a novel U-Net architecture enhanced
with a dual-attention mechanism for more
effective feature refinement.

*  We evaluate the model on diverse image datasets
and noise levels, showing consistent
improvements over state-of-the-art baselines.

% We
mechanisms with a post-processing Gaussian filter

demonstrate that combining attention

leads to improved perceptual quality in denoised

images.

Figure 1. Salt-and-pepper noise (right) and Gaussian noise (left)

2. Review of Previous Research

Numerous techniques have been developed to address
image denoising, ranging from traditional filtering methods
to modern deep learning approaches. Early techniques such
as mean filtering, median filtering, and Gaussian smoothing

Artificial Intelligence Applications and Innovations 1:4 (2024) 30-40

were widely adopted due to their simplicity and
computational efficiency [9]. However, these methods
often fail to preserve fine structural details and tend to
oversmooth images, especially when dealing with complex
or non-linear noise patterns [10].

The advent of deep learning has revolutionized image
restoration tasks. In particular, convolutional neural
(CNNs) have
performance in denoising due to their ability to learn

networks demonstrated  outstanding
hierarchical features from large datasets [11]. Among these,
the U-Net architecture, initially proposed for biomedical
image segmentation [12], has gained widespread popularity
in low-level vision tasks. Its symmetric encoder-decoder
design with skip connections facilitates effective feature
extraction and spatial detail reconstruction, making it
particularly suitable for noise removal [13].

Recent advancements have incorporated attention
mechanisms into U-Net to enhance its ability to focus on
relevant regions and suppress noisy features. For instance,
Woo et al. introduced the Convolutional Block Attention
Module (CBAM), which combines spatial and channel
attention in a sequential manner [14]. Similarly, Qin et al.
proposed the Residual Attention U-Net, which improved
denoising performance on medical images through spatial
awareness [15]. While these approaches have shown
improvements, they often employ only a single type of
attention, which may limit the model’s representational
power.

In contrast, our proposed model introduces a hybrid
attention mechanism that integrates both spatial and
channel attention blocks in parallel. This enables the model
to simultaneously capture spatial significance and inter-
channel dependencies, resulting in more effective noise
suppression across varying noise types and datasets.

Furthermore, while most prior works rely solely on end-
to-end learning for denoising, we enhance the output with a
Gaussian post-processing filter, a classical but powerful
tool that smooths residual noise and refines structural
continuity. This two-stage strategy of combining deep
attention with signal-domain refinement has not been
comprehensively addressed in existing literature.

Overall, our work builds upon and extends these
contributions by combining multi-dimensional attention
with post-processing, offering a more robust and
generalizable solution for image denoising.
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3. Materials and Methods

This section describes in detail the datasets used in our
experiments, the procedures followed to simulate noisy
environments, the architectural design of the proposed
model, and the metrics employed to assess performance.
Each component of the methodology has been carefully
selected and designed to ensure a comprehensive
evaluation of the proposed denoising framework across
multiple image domains and resolutions.

3.1. Data

To evaluate the generalizability and robustness of the
proposed model, we used two benchmark datasets with
distinct characteristics: CIFAR-10 and DIV2K. Each
dataset provides unique challenges for the denoising task
and enables validation across low-resolution and high-
resolution scenarios.

CIFAR-10 is a widely used dataset in the computer
vision community. It consists of 60,000 color images of
size 32x32 pixels, divided into 10 mutually exclusive
classes including airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. Out of the total, 50,000
images are designated for training and 10,000 for testing.
Despite its relatively small resolution, CIFAR-10 presents
significant challenges due to its high intra-class variability,
diverse backgrounds, and real-world noise-like textures.
This makes it an ideal candidate for testing the
effectiveness of denoising models under constrained spatial
resolution and high visual diversity.

Figure 2 presents sample images from the CIFAR-10
dataset under clean and noise-degraded conditions [32].

Original Oriinal Original Original Oriinal Original Oriinal Original Original Original
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Figure 2. Samples from the first dataset

On the other hand, DIV2K (DIVerse 2K resolution
dataset) is designed specifically for image enhancement
tasks such as super-resolution. It comprises 2,000 high-
quality images with resolutions up to 2K (2040x1080 and
higher). The dataset includes a wide range of scenes, from
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indoor environments and natural landscapes to crowded
urban streets and objects with intricate textures. This
diversity in both content and resolution allows our model to
be tested in challenging high-detail scenarios where minor
artifacts and residual noise become more visually
prominent. Using DIV2K helps evaluate how well our
model preserves high-frequency details while removing
noise in large-scale images [34].

Figure 3 presents sample images from the DIV2K
dataset under clean and noise-degraded conditions.

Original Image Original Image Original Image Original Image Original Image
- - T

Figure 3. Samples from the second dataset

All sample images from CIFAR-10 and DIV2K shown
in Figures X and Y were generated directly via code
execution on Google Colab. The datasets were downloaded
using standard public sources, and the displayed samples
were randomly selected from the loaded datasets. No
external images or manually curated samples were used.
This ensures reproducibility and confirms that the samples
accurately represent the original datasets.

3.2, Proposed Method

Noise Injection Procedure: In real-world imaging
systems, noise is an inevitable byproduct of environmental
factors, hardware limitations, and transmission errors. To
replicate such realistic conditions and rigorously train our
model, we applied additive Gaussian noise to the clean
images in both datasets. Specifically, we introduced zero-
mean Gaussian noise with a standard deviation of 6 =0.2, a
commonly used noise level in image restoration research,
which strikes a balance between moderate degradation and
preservation of underlying structure.

This noise was added directly to the pixel values of the
images, after which the resulting noisy images were clipped
to remain within the valid dynamic range of [0, 1]. These
noisy images were then used as inputs to the denoising
network, while the corresponding clean images served as
ground truth targets during supervised training. This
approach simulates realistic sensor noise and enables the
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model to learn effective feature representations that are
robust to common distortions.

Furthermore, we applied the same noise generation
strategy across both training and testing sets to maintain
consistency and allow for fair evaluation. The use of
synthetic noise, despite being artificial, allows precise
control over noise parameters and facilitates reproducibility

of  results—a crucial aspect in academic
research.Pseudocode(1) :
defadd noise(images):
noise factor =0.2
noisy images = images + noise_factor
* np.random.normal(loc=0.0, scale=0.2, (1)
size=images.shape)
noisy images = np.clip(noisy images,
0.,1)
return noisy _images
Proposed  Architecture with  Hybrid  Attention

Mechanism: The core of our methodology is a customized
U-Net architecture augmented with a hybrid attention
mechanism that integrates both channel attention (CA) and
spatial attention (SA) modules. U-Net has been widely
adopted for its efficient encoder-decoder structure with skip
connections, which enables effective feature extraction and
detail-preserving reconstruction.

However, in its vanilla form, U-Net lacks mechanisms
to differentiate important features from noise, especially in
cluttered or low-contrast regions.

To overcome this limitation, we enhance each decoder
stage of the U-Net with dual attention modules:

- The Channel Attention Module focuses on inter-
channel dependencies. It aggregates spatial information
through global average pooling, then applies a fully
connected layer followed by a non-linear activation to
generate channel-wise weights. These weights emphasize
more informative channels while suppressing redundant or
noisy features

- The Spatial Attention Module, in contrast, captures
where in the image the most salient information lies. It
computes a spatial attention map using convolutional
operations over the concatenated feature maps from
encoder and decoder paths. This map is used to reweight
spatial regions, directing the model’s focus to relevant pixel
locations.

By integrating these two attention mechanisms, the
model dynamically refines feature maps across both

(98]
W
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dimensions—what features are important and where they
are located. This hybrid mechanism improves the model's
capacity to reconstruct fine details, suppress background
noise, and maintain the structural integrity of the original
image.

The encoder part of the model consists of convolutional
blocks with kernel size 3x3, ReLU activation, batch
normalization, and max pooling layers for downsampling.
The decoder employs transposed convolutions for
upsampling, with skip connections from the corresponding
encoder layers to retain spatial coherence. A final sigmoid
activation scales the output to the [0,1] range, making it
suitable for grayscale or normalized RGB images.

Examining the Pseudocode(2):

function encoder_block(input,

num_filters):

output = convolution(input,
num_filters, kernel_size, stride)

output = activation_function(output) 2)
#e.g., ReLU

output = normalization(output)

output =  max_pooling(output,
pool_size)

return output, pooled_output

Each  convolutional block includes two 3x3
convolutional layers, followed by Batch Normalization,
ReLU activation, and Dropout (rate = 0.3) for
regularization. These blocks serve as the building units in
both encoder and decoder.

Why Use Convolutional Blocks?

Local Feature Extraction: Convolutional filters, as they
traverse the image, identify local features such as edges,
corners, and textures.

Preserving Spatial Relationships: Convolutions maintain
spatial relationships between pixels, which is crucial for
object and pattern recognition.

Reducing Parameters: Weight sharing among filters
decreases the number of trainable parameters, mitigating
the risk of overfitting.

Typical Structure of a Convolutional Block:

e Convolutional Layers: Filters are applied to the
input image, generating feature maps.

e Activation Function: A function like ReLU
introduces non-linearity to the output of the
convolutional layer.
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Batch
Normalization stabilize training and improve

e Normalization: Techniques like
network performance.

e Downsampling Layer (Optional): Layers like
MaxPooling reduce dimensionality and extract
more significant features.

Pseudocode for a Convolutional Block(3):
def conv_block(x, filters):

X = Conv2D(filters,
kernel_size=3, padding="same')(x)
x = BatchNormalization()(x) (€))

x = ReLU()(x)

x = Dropout(0.3)(x)
Conv2D(filters,
kernel size=3, padding='same")(x)

X =

x = BatchNormalization()(x)
return X

A decoder block plays a crucial role in deep neural
networks—particularly within generative models and
autoencoders—by reconstructing detailed information from
a compressed representation. It transforms a lower-
dimensional input, typically a vector, into a higher-
dimensional output, such as a reconstructed image.

How a Decoder Block Works:

[J Receives Compressed Input The decoder accepts a
low-dimensional vector as input, which contains features
extracted by preceding layers of the network (e.g., the
encoder).

[J Progressive Dimensional Expansion Through the
use of transpose convolution and convolutional layers, the
decoder gradually expands the dimensionality of the output,
refining spatial details with each layer.

[ Skip Connections for Detail Retention To maintain
spatial and structural information, the output of each
decoder layer is commonly concatenated with
corresponding encoder-layer outputs via skip connections.
These help preserve fine-grained information throughout
the reconstruction process.

Importance of Decoder Blocks:

[J High-Quality Image Generation Decoder blocks
are vital in generating realistic and visually coherent
outputs in generative models, such as GANs or VAEs.

[J  Restoration of Missing Data In autoencoders,
decoders aim to recover information potentially lost during
the compression stage.
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[J Insight into Latent Representations By examining
the decoder’s output, researchers can gain valuable insights
into how data is structured and represented within the latent
space.Pseudocode(4) for a Decoder Block:

def decoder_block(inputs,
skip_features, filters):

x = layers.Conv2DTranspose(filters, (2, 4
2), strides=(2, 2), padding='same")(inputs)

X = layers.concatenate([X,
skip features])

x = conv_block(x, filters)

return x

Gaussian Filter for Post-processing: While deep learning
models can learn powerful denoising mappings, in practice,
they may still leave behind small residual artifacts or noise.
To further enhance the perceptual quality of output images,
we incorporate a Gaussian filter as a lightweight post-
processing step after the final decoder layer.

The Gaussian filter applies a localized smoothing
operation based on a Gaussian kernel, which reduces high-
frequency fluctuations while preserving the global structure
of the image. This operation helps mitigate edge ringing,
checkerboard artifacts, and minor speckles that may persist
after neural network inference. The kernel size and
standard deviation of the filter were empirically selected to
balance noise suppression and edge preservation.

This hybrid approach—combining learnable attention
modules with classical filtering—offers the best of both
worlds: deep semantic learning and traditional signal
smoothing.

Pseudocode for Applying Gaussian Filter (5):

import cv2

def  apply gaussian_filter(image,
kernel_size=5, sigma=1.0):

return cv2.GaussianBlur(image, (
(kernel_size, kernel size), sigma) 5)

output_image = ... # Model output

filtered output =

apply _gaussian_filter(output _image)

The overall pipeline of the proposed denoising
framework is illustrated in Figure 4. It outlines the key
stages, including dataset preparation, noise injection,
hybrid attention-based U-Net processing, Gaussian post-
filtering, and performance evaluation. This step-by-step
diagram helps visualize the full procedure from input to
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evaluation and highlights the integration of both deep

learning and classical techniques.

Figure 4. The proposed method

Figure 4 Workflow of the proposed image denoising
model. The process starts with dataset loading and
Gaussian noise injection, followed by inference using a
hybrid attention-enhanced U-Net architecture. The output is
then refined using a Gaussian filter, and performance is
evaluated using PSNR, SSIM, and accuracy metrics. The
proposed model introduces several architectural and
functional innovations compared to conventional U-Net
and Attention U-Net variants [14]. First, our network
incorporates a deeper convolutional structure with an
increased number of layers and optimized hyperparameter
settings, allowing it to extract more complex and high-level
features from noisy images.Furthermore, we integrate
advanced training strategies such as batch normalization,
data augmentation, and dropout, which collectively
improve generalization and reduce overfitting. Batch
normalization, in particular, stabilizes and accelerates the
learning process by normalizing the input to each layer.

Artificial Intelligence Applications and Innovations 1:4 (2024) 30-40

While previous works such as the Attention U-Net [15]
were tailored for specific applications—e.g., medical image
segmentation—our architecture is designed as a general-
purpose denoising framework, applicable across diverse
datasets and noise types.

A key innovation of our model is the incorporation of a
hybrid attention mechanism that simultaneously integrates
channel attention (CA) and spatial attention (SA) modules
in parallel. Unlike most existing models that apply only one
type of attention, this design enables the network to
emphasize both what features are important (via CA) and
where they are located (via SA), resulting in more effective
noise suppression and structure preservation.

To enhance robustness under real-world conditions, we
introduce Gaussian noise (¢ = 0.2) during training,
simulating practical sensor imperfections and increasing
dataset variability. This strategy allows the network to
better generalize to unseen noisy environments.

Unlike segmentation-based models which output
probabilistic heatmaps, our model produces continuous-
valued pixel predictions in the range of [0, 1], using a
sigmoid activation function at the final layer. This output
format is more appropriate for denoising tasks where
precise reconstruction of pixel intensities is required.

The baseline U-Net architecture, depicted in Figure 5,
consists of an encoder (downsampling) and decoder
(upsampling) pathway with skip connections, which help
retain spatial information during reconstruction. This
structure effectively captures both global context and local
details.

As illustrated in Figure 6, The hybrid attention
mechanism used in our model is illustrated in Figure 7,
where both channel and spatial attention modules are
applied in parallel, allowing the network to capture inter-
channel dependencies as well as spatial importance
simultaneously.

T
ot

Figure 5. U-Net Architecture [16]




Figure 6. Proposed architecture
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Figure 7. Attention Block Architecture

Figure 7 Hybrid attention block integrated into the
decoder stages of the proposed U-Net architecture. Channel
attention (CA) and spatial attention (SA) are computed in
parallel and fused through element-wise multiplication. A
residual connection from the input feature map enhances
gradient flow and feature refinement.

3.3, Evaluation Metrics

In this section, we provide a summary of two well-
known metrics used to evaluate the performance of
denoising methods. While most existing works rely on
quantitative metrics for comparisons, the visual quality of
denoised images is also crucial, as humans are often the
end consumers of these images.

Peak Signal-to-Noise Ratio (PSNR): PSNR, measured in
decibels (dB), is the most widely used criterion to quantify
degradation resulting from losses in image transformations
(e.g., compression, transmission, or reconstruction). Due to
its low complexity and ease of use, it is commonly
employed for comparisons. Given two images X = {x; € R}
"~iand Y = {yi; € R}"=;, PSNR is calculated according to

Formula (1) :
PSNR = 10logeio(MAX_x"2/MSE)
MSE = 1/nYi-1"(yi—yi )2 (M

where MAX x is the maximum value in the dynamic
range of the images. In the context of image reconstruction,
higher PSNR wvalues typically indicate better quality.
However, in some cases, PSNR may not effectively
correlate with perceived quality as assessed by human
observers.
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Structural Similarity (SSIM): Structural similarity
(SSIM) is proposed as a more sophisticated image quality
assessment metric that aligns better with human perception
of visual quality. SSIM measures the visual impact of
changes in image luminance, contrast, spatial
dependencies, and overall structural information in the
viewing field. Given two images X = {x; € R} %=jand Y =
{yi € R}"=1, SSIM is computed according to Formula (2):

SSIM = [Lx,Y]Aa [CX,Y]Ab [SX,Y]AC (
2)
a>0,b>0,c>0 -control the relative

significance of each term. The luminance, contrast, and

where

structural components are defined according to Formulas

(3), (4), and (5):

Ly =2pdty + €11 p 2 + 2 + €1 A3)
Cxy= ZGXY + e/ 02+ Gyz +€; @)
Sx.y = Oxy+€3/ 6x+ Oy T €3 5)

where i and L, denote the means, oy and oy denote the
standard deviations, and o,  denotes the correlation
between X and Y Additionally, €, €2, and €3 are constants
introduced to prevent instability when the denominators

approach zero [17].

4. Results and Analysis

This section presents a comprehensive evaluation of the
proposed hybrid-attention U-Net model, combining both
quantitative metrics and qualitative visual comparisons.
The model's performance was rigorously assessed on two
benchmark datasets, CIFAR-10 and DIV2K, representing
diverse image types and resolutions. Our goal is not only to
measure denoising accuracy but also to assess the model's
capability in preserving structural details and suppressing
different forms of noise effectively.

4.1.  Quantitative Results

To evaluate the denoising performance numerically, we
employed four standard evaluation metrics: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM),
pixel-wise accuracy, and loss (Mean Squared Error). Table
1 summarizes the comparison between our proposed model
and several recent state-of-the-art methods, including those
proposed by Chen et al. (2022), Li et al. (2023), and others
[11,12].

The results show that our model consistently
outperforms the competing methods across all four metrics.
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Specifically, our model achieved an average PSNR of 37
dB, which reflects a significant improvement in fidelity
compared to previous models (e.g., 36.5 dB in [11, 12]). In
addition, the SSIM score of 0.94 indicates excellent
structural preservation, especially in high-frequency
regions such as edges and fine textures. The accuracy of
82% and low loss value of 0.01 further confirm the
robustness of the network in learning reliable mappings
from noisy to clean image domains.

The improvements are attributed to the hybrid attention
blocks, which allow the model to dynamically emphasize
relevant features at both the spatial and channel levels,
reducing the influence of irrelevant noise while maintaining
important structural content. The inclusion of the Gaussian
filter also plays a role in smoothing residual noise and
enhancing final output quality.

4.2.  Training Stability and Convergence

Figures 8 and 9 illustrate the training and validation
curves for accuracy and loss, respectively, across multiple
epochs. The accuracy curve shows a steady and monotonic
increase over time, suggesting that the model is effectively
learning meaningful patterns in the noisy input images.
Simultaneously, the loss curve exhibits a consistent decline,
eventually stabilizing at a low value of 0.01, indicating that
the model reaches convergence without oscillations or
overfitting.

Notably, the gap between the training and validation
curves remains minimal throughout the process. This
narrow gap reflects the model's generalization capability
and suggests that it performs well on unseen test data. The
use of dropout and batch normalization layers likely
contributed to this stability by preventing overfitting and
encouraging better feature learning.

These findings highlight the importance of a well-
designed training protocol, including appropriate noise
careful
architectural tuning. The training process demonstrates that
the hybrid-attention U-Net is both data-efficient and stable
under supervised learning conditions.

levels, sufficient data augmentation, and

4.3.  Qualitative Visual Analysis

To complement the quantitative evaluation, we
performed extensive visual comparisons on sample images
from both CIFAR-10 and DIV2K datasets. Figures 10 and
11 and 12 show denoised outputs produced by the proposed
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model. The images clearly demonstrate the model’s ability
to suppress noise while preserving crucial visual details.

In the CIFAR-10 samples, which contain complex low-
resolution images with intricate object boundaries, the
model successfully reconstructs sharp edges, textures, and
object shapes, even in regions heavily affected by noise.
For instance, the model restores facial features of animals
and outlines of vehicles without introducing artifacts or
blurring.

In the high-resolution DIV2K images, where detail
preservation is particularly critical, the model maintains
fine textures such as foliage patterns, brick walls, and
textural gradients. The post-processing Gaussian filter
contributes to smooth transitions in homogeneous regions,
while the hybrid attention blocks ensure that edges and
salient structures remain intact.

Figure 17 provides a side-by-side comparison between
our method and that of Huang et al. (2021) [13]. Visually,
our model produces cleaner outputs with more natural
texture continuity and fewer visual distortions. Areas that
previously appeared blotchy or overly smooth in other
models are handled more elegantly in our approach [13].

4.4.  Comparative Model Evaluation

To provide a comprehensive performance comparison,
we benchmarked our model against five recent denoising
methods using four criteria: accuracy, PSNR, SSIM, and
loss. The comparison results are depicted in Figures 13
through 16.

- Figure 13 (Accuracy Comparison): Shows that our
model consistently achieves higher classification accuracy
on restored images, indicating that denoising preserves
semantically important content.

- Figure 14 (SSIM Comparison): Highlights our model's
ability to preserve structural similarity, outperforming
existing models even in fine-detail regions.

- Figure 15 (PSNR Comparison): Reinforces the
superiority of our method in minimizing reconstruction
error, especially in challenging conditions such as cluttered
scenes and strong Gaussian noise.

- Figure 16 (Loss Comparison): Confirms the efficiency
of our training approach and architecture in reducing pixel-
level discrepancies with clean targets.

To ensure fairness, all models were reimplemented or
adapted based on their respective original descriptions, and
evaluated under identical conditions—including noise
levels, data splits, and preprocessing steps. This controlled
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Figure 10. Denoising results with the CIFAR-10 dataset

strategies in image restoration—strategies that integrate
deep learning with traditional signal processing methods.

Our findings suggest that further improvements may be
possible by exploring learnable attention fusion
mechanisms, noise-adaptive filtering techniques, or even
integrating adversarial objectives for sharper image
synthesis.

Overall, the proposed model demonstrates competitive
and often superior performance in quantitative, visual, and e e
stability —analyses. Its general applicability, low
reconstruction error, and detail preservation capacity make
it a strong candidate for real-world denoising applications
across multiple domains.
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Figure 12. Denoising results
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Figure 14. Comparison of image similarity [10-13, 15]
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Figure 15. Comparison of image quality [10-13, 15]
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Figure 16. Comparison of model loss [10-13, 15]
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Figure 17. Sample Visual Comparison of Models.

Table 1. Model comparison [10-13, 15].

Model (%) Accuracy PSNR  SSIM  Loss
Model Reference [10] 80 36 93 0.03
Model Reference [11] 81 36.5 93.5 0.02
Model Reference [12] 7 335 90 0.06
Model Reference [13] 80 36 93 0.03
Model Reference [15] 79 34 91 0.04
Our proposed Model 82 37 94 0.01

5. Conclusion

In this paper, we proposed a novel image denoising
architecture based on the U-Net framework, augmented
with a hybrid attention mechanism that integrates both
channel attention and spatial attention modules. The dual
attention design enables the model to dynamically focus on
informative features across both spatial regions and feature
channels, leading to enhanced denoising performance
across a variety of image domains.

To further refine the output quality, we introduced a
Gaussian post-processing filter that effectively smooths
residual noise while preserving structural details. The
combination of learnable attention mechanisms and
traditional filtering forms a synergistic denoising strategy
that outperforms existing state-of-the-art models both
quantitatively and visually.

Experimental evaluations conducted on CIFAR-10 and
DIV2K datasets demonstrated the superiority of our
method in terms of PSNR, SSIM, accuracy, and visual
fidelity. The proposed model achieved a PSNR of 37 dB,
an SSIM of 0.94, and an accuracy of 82%, confirming its
ability to suppress noise while maintaining image realism
and detail integrity.
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Moreover, the training process exhibited stable
convergence and strong generalization, as reflected in the
consistent performance across validation datasets. The
inclusion of hybrid attention and post-processing filtering
proved to be particularly effective in handling both low-
resolution and high-resolution images.

In summary, the proposed model offers a robust,
efficient, and generalizable solution for image denoising.
Future research can explore further improvements by
investigating adaptive attention weighting schemes,
incorporating adversarial learning, or extending the
framework to handle real-world noise with non-Gaussian
characteristics.
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